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Research on the Application of Few-Shot Learning in Image Recognition

SUN Jinghao, NIE Kai
(Unit. 91550 of PLA, Dalian 116023, China)

Abstract; With the development of large-scale datasets, deep learning-based neural network models have achieved excel-
lent performance in image recognition fields such as face recognition, intelligent driving. and medical diagnosis. However,
in practical applications, due to various limiting factors, researchers are unable to obtain a large number of samples that
meet the requirements. Therefore, It is of great meaningful to study image recognition under small sample conditions. This
paper systematically reviews recent few-shot learning advances in the field of image recognition, introduces and analyzes re-

lated work from three aspects: data augmentation-based methods, representation learning-based methods, and learning

strategy-based methods, and explores and discusses {uture research directions by current research status.
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