测试与故障诊断

计算机测量与控制.2020.28(5) Computer Measurement & Control

文章编号:1671-4598(2020)05-0061-04

文献标识码:A

基于 LabVIEW 的 mN 级微推力 测量系统研究

刘岳鹏,周磊,马鑫

(北京航天试验技术研究所,北京 100074)

摘要:针对卫星和航天器上的微小推力测量问题,设计一种 mN 级稳态微推力测量系统;推力架结构采用扭摆式测量原理, 通过非接触式的激光位移传感器测量扭臂的偏转角度,并结合可调节的电磁平衡力来进行动态的闭环控制;微推力测量系统采用 NI 的控制器和采集板卡,在 LabVIEW 软件中编写 PID 控制算法,并开发了测量和标定的应用软件来实现 mN 级微推力测量;试 验测试利用一组精密砝码通过 3 次加载和卸载过程来进行系统标定性能的验证;试验结果表明,微推力测量系统能够满足量程在 10~200 mN 范围的测量,经分析,通过最小二乘法拟合获得的标定直线显示了良好的线性和重复性,加载和卸载过程的数据也 具有较高的一致性,测量精度可达 0.31%,满足 mN 级微推力测量的要求,确保了测量的稳定性和可靠性。

关键词:mN级;微推力;扭摆;闭环控制;电磁力

Research of the Micro-Thrust Measurement System with mN-Level Based on LabVIEW

Liu Yuepeng, Zhou Lei, Ma Xin

(Beijing Institute of Aerospace Testing Technology, Beijing 100074, China)

Abstract: Aiming at the measurement problem of micro-trust on the satellite and spacecraft, a steady-state micro-trust measurement system with mN-level was designed. The measurement principle of torsion pendulum was applied on the structure of thrust stand. By the non-contact laser-displacement sensor, the drift angle of torsion arm was measured, which was combined with the adjustable electromagnetic balance force to carry out the dynamic closed-loop control. The controller and collector of NI company was used to the micro-thrust measurement system. The PID control algorithm and application software of measurement and calibration was developed on the LabVIEW platform to realize the mN-level micro-thrust measurement. The experiment was designed to verify the system calibration performance by the upload and unload process of 3 times with a series of precise weights. The results demonstrate that the micro-thrust measurement system is satisfied with the measurement range of $10 \sim 200$ mN. In this analysis, the calibration curve obtained by the least squares fit exhibits a good linearity and repeatability, and the data of upload is consistent with the data of unload. The accuracy of measurement is 0.31%, which is satisfied with the requirement of mN-level micro-thrust measurement and ensures the stability and reliability of measurement.

Keywords: mN-level; Micro-thrust; Torsion pendulum; Closed-loop control; Electromagnetic force

0 引言

近年来,为了降低空间设备的制造和发射成本,国内 外对微小型卫星和航天器进行了深入的研究^[1-2],尤其是在 卫星编队飞行和空间站建设等方面,如何保证精准的姿态 调整和轨道控制,如何确保相互间的位置关系等问题,都 给卫星和航天器的推进系统提出了极大的挑战^[3-4]。由于质 量和体积较小,通常要求提供 mN 量级的微小推力进行飞 行控制,这就需要具有准确测量微小推力的能力^[5]。

微推力测量与传统推力测量相比具有很大的难度,主要是因为测量过程容易受到环境影响,比如推进器自身工 作时产生的振动、测量人员在旁边的走动和呼吸等都会对 测量结果产生影响。国外从 20 世纪 60 年代就开始了对微推 力测量技术进行研究^[6-7],到 20 世纪 90 年代后,研究出了 多种微推力测量技术的测量原理和装置。国内的相关高校 和机构也对微推力测量技术进行了深入的研究。同时,微 推力测量技术的发展对于微推进器的研究也是必须突破的 技术难题^[8],因此,对微推力测量技术的研究仍具有重要 意义。

本文从 mN 级微推力测量的实际需求出发,提出微推 力测量装置的原理、结构和测控系统的设计方案,研制出 性能稳定可靠、功能完善的数字化试验样机,以软件算法 实现 PID 闭环控制过程,提高测量的稳定性和准确性,以 满足 10~200 mN 范围的微推力测量需求。通过标准砝码的 重复性测试对系统性能进行验证和评估,考核微推力测量 系统的各项性能指标,以达到国内外对微推力测量系统的 技术标准。

收稿日期:2019-11-14; 修回日期:2019-12-13。

作者简介:刘岳鹏(1990-),男,北京人,工程师,主要从事姿轨 控发动机试验、软硬件系统开发方向的研究。

1 微推力架的结构和原理

目前国内外对于 mN 级微推力测量系统的原理和结构 设计,主要采用直接测量法、扭摆式、天平式、单摆式和 形变式等几种方法^[9]。不同测量模式具有各自的优点,本 文采用的方法是扭摆式测量原理,将推进器安装在扭臂上, 扭臂作为执行机构,推进器产生推力时,扭臂在力的作用 下会沿水平方向转动,恢复力由扭转弹性元件提供。该方 法具有线性度好、对纵向振动不敏感、灵敏度可通过横梁 长度调整等优点^[4]。但不足之处在于温度的改变会引起弹 性元件扭转刚度系数的变化,在试验过程中应保持环境的 相对稳定。

按照扭摆式微推力测量系统可分为机械系统和测控系统。机械系统是微推力测量的硬件结构,包括扭摆臂、弹性元件、扭臂固定支架和支撑平台等。支架上下两端的弹性元件与扭摆臂连接,扭臂在力的作用下发生偏转后,弹性元件为其提供恢复力,摆臂的偏转角度可用于分析和评估推力的大小。测控系统包括位移传感器、电磁力控制环节、以及软硬件的采集与控制部分。微推力架的结构如图1 所示。受力组件通过丝线经滑轮连接吊篮,吊篮用于放置标定时的砝码,提供标定力,激光器保证标定时力的作用 线与滑轮水平切线重合。

 1: 受力组件; 2: 扭摆臂; 3: 扭臂固定支架; 4: 弹性元件; 5: 位移传感器; 6: 电磁力环节; 7: 激光校准器; 8: 支撑平台 图 1 微推力架的结构

本研究采用扭摆式推力测量原理,推力架的扭摆臂是测量的核心环节,当推力作用使扭臂发生水平方向的转动时,通过位移传感器测量出扭臂的偏转幅度,通过位移传感器的输出值作为衡量推力的大小。但在开环测试条件下,虽然方法简便,但扭臂在无约束的状态下,仅靠扭转弹性元件很难或需要很长时间才能达到稳定,轻微的扰动都会使扭臂产生长时间的波动,而且扭臂在回归零位时会有误差,重复性不高,这些问题都会给测量结果带来较大影响。因此,在本文的推力测量系统设计时,采用闭环测量方式。利用平衡力组件作为 mN 级微推力的抗力^[10],使扭臂在受力过程中始终保持在同一位置,根据受力平衡的原理,平衡力的值就是推力架所受微推力的大小。这种方式不仅解决了测量稳定性和可重复性等问题,还能使系统

的测量范围不受位移传感器的量程影响,实现更大范围的 推力测量。

2 测控系统硬件设计

测控系统硬件部分主要包括传感器、控制模块和采集 设备等。本文采用的位移传感器是某型号的激光三角反射 传感器,有效测量范围为 10 mm,输出信号为 0~5 V 的电 压信号,将其固定在支撑平台上,用于测量推力架扭臂在 受力时偏转的距离。为便于调整激光位移传感器与扭臂之 间的相对距离,采用差动螺旋微动结构的微调整器对位移 传感器进行精密调整。

闭环反馈过程中的平衡力组件采用电磁力来提供。由 于推力架结构采用的是 304 不锈钢,电磁铁无法直接给扭 臂提供吸力或斥力,因此,采用永磁铁和电磁铁结合的方 案,将一块永磁铁通过环氧树脂胶固定在扭摆臂上,电磁 铁线圈固定在推力架的支撑平台上。测量系统会根据激光 位移传感器测量的结果对支撑平台上的电磁铁进行控制, 通过调整线圈的导通电流,来实现对电磁力大小的控制。 从而保证位移传感器的输出保持恒定,最终以施加到线圈 上的电压作为标定微推力大小的物理量。

采集设备的硬件平台选择 NI 公司的 4 插槽 PXI-1031 控制器,搭配 PXI-6289 高精度采集板卡,可提供 32 路 18 位模拟输入(测量分辨率可达 0.038 mV)和 4 路 16 位模拟 输出(控制输出分辨率为 0.15 mV),确保了测量和控制的 精度要求。同时,硬件还具有 40 kHz 低通滤波器,能有效 降低高频噪声干扰等问题。通过采集板卡可将激光位移传 感器的测量值通过模拟输入通道采集到系统中,也能通过 模拟输出通道为电磁铁线圈提供驱动电流。

虽然 PXI-6289 板卡的模拟量输出电压范围可达到 -10~10 V,但输出电流最大仅为5 mA,而测量系统要满 足电磁铁提供的平衡力需求,通电线圈的电流会超过 300 mA。因此,需要在板卡输出过程中,通过功率放大模块提 高输出功率。通过市场调研,采用了由 OPA544 芯片^[11]设 计的功率放大模块来驱动电磁铁线圈,为微推力测量提供 可靠的电磁平衡力。

鉴于本文的 mN 级微推力测量过程中的控制对象相对 简单,闭环控制策略采用应用最为成熟 PID 算法即可^[12]。 PID 控制器是工业控制中最常见的反馈回路环节,其将采 集信号(常称为过程变量 Process Value)和一个设定值 (Set Point)进行比较,然后把差值输入 PID 算法获得新的 控制量,这个控制量的目的是通过反馈环节让系统的测量 数据达到或者保持在设定值附近。PID 控制器可根据历史 数据和差值大小来实时调整控制量,这样可以使系统更加 准确和稳定。

在本文采用的 PID 控制过程中,将激光位移传感器采 集的位移信号作为过程变量,根据前期调试经验,选取适 当的位移值作为 PID 控制算法中的给定值,输出到电磁铁 线圈的电压值是输出的控制量。系统测量过程中,将实测 的位移与给定值的偏差输入算法,计算得到输出到电磁铁 线圈上的电压值,实现单次调节。同时,不断重复上述过 程,直到位移传感器的测量值稳定到设定值附近,将此时 的电磁铁线圈上的电压值作为反应推力大小的标准。图 2 为 mN 级微推力测量系统测量过程。

3 测控系统软件设计

本文的微推力测量系统的软件开发平台选择 NI 公司的 LabVIEW 软件,其以便捷的控件界面和图形化的程序框图 进行编程,通过数据流的形式实现微推力测量和控制的流 程,其优点是开发周期短、程序结构和逻辑关系清晰明了, 有利于快速搭建测控软件框架和后期维护^[13]。

现有的国内外一些推力测量系统中,常使用硬件的 PID 控制电路进行反馈调节,但这一过程需要将比例、积分和 微分环节的参数固化到硬件中,一旦设计完成,很难再修 正和改善参数,因此需要在设计过程中经过反复的测试和 验证,以保证硬件的适用性。本文的设计中采用软件编程 的方案,在 LabVIEW 环境中编写 PID 的控制算法^[14],利 用数学公式计算输出控制量。这种方法的优点在于可以在 试验过程不断调整 PID 控制参数,以便达到最佳的控制效 果;不足之处在于响应速度比硬件方法要慢一些,但 Lab-VIEW 软件中 PID 算法可实现最小 1 ms 的响应速度,也完 全能够满足微推力测量过程的需求。

基于 PXI-6289 采集卡,在 LabVIEW 平台下编写的采 集与控制程序采用 DAQmx 模块,利用开发环境提供的驱 动函数,其可以将控制器、采集板卡和微推力测控应用软 件结合起来,实现模拟和数字信号采集与输出,从而达到 本文 mN 级微推力测量中的位移测量和电磁力输出的目的。 另外,LabVIEW 软件还为开发人员提供了 PID 控制工具 包,将闭环控制算法封装为 vi 函数,避免了编写复杂算法 的过程,为项目开发提供了极大的便捷。开发过程中,只 需要调整好比例、积分和微分环节的增益参数,该 vi 函数 即可自动计算出控制量,以达到消除过程变量和设定值之 间偏差的目的。

微推力测量程序的执行流程如图 3 所示。系统启动后, 首先会对位移量采集和电磁力控制过程的硬件接口通道进 行配置,等待操作人员的指令进行推力标定或推力测量。 当进入标定流程时,由操作人员手动使用标准的精密砝码 依次进行加载和卸载。每当通过砝码进行一次加载或卸载 时,推力架的扭臂将发生偏转,此时由位移传感器和电磁 平衡力组件配合实现 PID 闭环控制,其过程是软件通过采 集板卡的模拟输入通道实时采集位移传感器的输出值,当 发现测量值与系统的设定值有偏差时,软件启动 PID 控制 算法,计算出相应的控制量,并将此控制量作为输出,通 过模拟输出通道施加到电磁铁的线圈上产生电磁力,用以 抵消因受力变化而产生的扭臂偏转。经过多次快速调节, 使扭臂的位置稳定在系统设定值处,即完成一个力值的标 定,此时记录下输出到电磁铁线圈的电压值。当加载到 200 mN 或卸载到 0 mN 时,表示完成一次标定流程,系统会根 据最小二乘法进行拟合,计算出本次进程/回程中,施加到 电磁铁线圈上的电压与砝码提供的推力之间的直线方程。 在进入推力测量流程时,当向推力架扭摆臂施加推力后, 软件启动 PID 算法,通过位移传感器的测量值和电磁铁提 供的电磁力使扭臂稳定在设定值处,此时记录下施加到电 磁铁线圈上的电压值,并将该电压值带入标定获得的直线 方程中,从而计算出施加到扭臂上的推力值。

图 3 程序流程图

在 LabVIEW 中编写的测控软件采用 1 个模拟输入 (AI)通道对位移传感器的信号进行采集,1 个模拟输出 (AO)通道将 PID 算法获得的控制量以电压的形式输出到 电磁铁的线圈上。通常的测控系统中,为了保证采集到的 数据的实时性和有效性,采集程序部分的优先级一般设定 为最高,不能被其他程序流程打断。因此,在本文中将采 集程序部分的代码封装为单独的线程,其只负责将位移传 感器输出的信号实时采集到测量系统中,并将原始信号同 步存储到文件中。同时,将 PID 控制环节、模拟电压输出 和输出数据存储等过程封装到另外的线程之中,负责将位 移传感器的测量值输入 PID 算法计算出控制量,通过模拟 输出通道将输出值电磁铁的线圈,并将控制量的值保存至 文件。由于第二个线程需要使用第一个线程中的位移传感 器测量值,因此通过 LabVIEW 软件中的消息队列函数进行 数据交换,既保证了数据传输的实时性,又能有效避免线 程之间的相互干扰。

4 实验结果与分析

为了验证 mN 级为推力测量系统的性能,本文采用了 精密砝码进行模拟加载和卸载,由于微推力测量受环境影 响较大,轻微的振动、甚至有人在周围走动都会对信号产 生严重影响,因此,在测量过程中,应对测试环境的稳定 状态进行严格把控。试验前,先通过不断地加载和卸载的 尝试,观察闭环控制系统稳定的时间和过程,依次对 PID 控制中的比例、积分和微分系数进行调整,在提高响应速 度的同时,不断减小超调和静差,直到找到系统的最佳控 制参数。

试验过程中,先依次加载两个质量为1g的砝码,之后 每次以2g为步进加载,每次加载结束后,等待位移传感器 与电磁铁的平衡力通过 PID 调节使扭臂稳定到设定值,记 录下输出到线圈的电压值,直到加载到 20g;稳定一段时 间后,再以每次2g为步进卸载,同样记录下每次 PID 调节 稳定后输出的电压值,直到卸载到初始状态。表 1 所示为 连续 3 次加载+卸载过程的砝码标定数据(试验地点为北 京,重力加速度g取 9.886 m/s²)。

将表1中3组测量数据的加载和卸载过程分别取平均 值,以砝码施加的等效推力为*x*轴,微推力测量软件输出 的电压值为*y*轴,画出两者的关系曲线。根据最小二乘法, 拟合出线性方程,如图4所示为加载过程和卸载过程拟合 的线性方程。

从图 4 的加载过程和卸载过程拟合的线性方程来看, 推力架在进程和回程之间的差异很小,说明系统测量的迟 滞性误差较低,能够保证推力测量时的准确性。因此,以 3 组试验数据的总平均值作为 y 轴进行最小二乘拟合,计算 出微推力架在 10~200 mN 范围内,推力测量系统输出的电 压与标定力(砝码等效推力)的标定直线如式(1)所示。

 $y = 7.508x + 14.5854 \tag{1}$

由上面的关系式得出,当推力变化 1 mN 时,测量系统 输出到电磁线圈的电压值变化 7.508 mN,即微推力测量系 统的灵敏度为 7.508 mV/mN。数据的线性关系系数 $R^2 = 1$, 可以看出微推力测量系统的输出电压值与砝码等效推力之 间具有非常好的线性关系。

将式(1)的关系曲线,与实际的微推力测量系统输出 的值通过比较来评定静态标定中的线性度。由表1中的数 据计算得到,总平均值与拟合值间的最大偏差值为1.2 mV,微推力架的量程为200 mN,计算出非线性 δ_{L200}为:

$$\delta_{L^{200}} = \frac{1.2}{200 \times 7.508} \times 100\% = 0.08\%$$

针对表 1 中的 3 组测量数据,采用极差法分别计算出每 个标定点在加载和卸载过程的总的平均极差,再根据试验 过程的校准循环次数为 3,取系数 d_R 为 1.69,计算出平均 标准偏差 σ 为 0.94 mV,因此得到推力架在 200 mN 量程范 围内的重复性误差 δ_{R200} 为:

表1 mN级微推力测量系统的标定数据

砝码	砝码等效	推力输出/mV						计算值/mV			
质量/g	推力/mN	加载1	卸载1	加载 2	卸载 2	加载 3	卸载 3	加载均值	卸载均值	总均值	回归拟合
1	9.866	90	89	89	88	87	88	89	88	88.5	88.7
2	19.77	163	162	162	162	162	161	162	162	162	163
4	39.54	313	310	312	311	312	310	312	310	311	311.5
6	59.32	461	458	461	460	462	458	461	459	460	460
8	79.09	610	607	610	609	610	608	610	608	609	608.4
10	98.86	759	756	759	757	758	758	759	757	758	756.8
12	118.63	907	905	906	905	906	906	906	905	905.5	905.3
14	138.40	1 055	1 052	1 055	1 052	1 056	1 054	1 055	1 053	1 054	1 053.7
16	158.18	1 203	1 201	1 204	1 200	1 202	1 203	1 203	1 201	1 202	1 202.2
18	177.95	1 351	1 350	1 350	1 349	1 350	1 351	1 350	1 350	1 350	1 350.6
20	197.72	1 500	1 500	1 497	1 497	1 498	1 498	1 498	1 498	1 498	1 499.1