文章编号:1671-4598(2020)03-0168-06

DOI:10.16526/j. cnki.11-4762/tp.2020.03.035 中图分类号:TP3

文献标识码:A

基于 NX 二次开发的三维弹簧 快速设计方法

白海滨¹,郭伟东¹,贺 飞²

(1. 中国兵器装备研究院,北京 102209; 2. 中国兵器工业第二〇八研究所,北京 102202)

摘要:为了解决多种常用弹簧在结构设计中步骤繁琐、工作量较大等难点问题,综合考虑简单易上手的原则,设计出一套符合复杂力学要求的快速建模方法,能够根据弹簧的力学特性,提炼出相关参数,进行计算分析,并可为后续的计算机辅助分析和 弹簧的制造提供准确的基础模型和数据,大幅度提高弹簧三维模型创建的效率和质量;同时根据 NX Open API 的二次开发原理, 论述了二次开发环境设置、二次开发窗体设计及二次开发程序调试等基本功能,在此基础上提出了三维弹簧快速设计方案,并就 开发及实现过程中的关键技术,如程序结构、接口、逻辑流程图等分别进行了详细论述,设计结果满足理论计算要求,可以为基 于 NX 的二次开发提供支撑。

关键词: 弹簧设计; 二次开发; NX Open API

Fast Design Method of Three—dimensional Spring Based on Secondary Development Based on NX

Bai Haibin¹, Guo Weidong¹, He Fei²

(1. China South Industry Academy, Beijing 102209, China;

2. No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China)

Abstract: In order to solve the difficult problems such as complicated steps and heavy workload in structural design of various commonly used springs, a set of fast modeling method which can meet the requirements of complex mechanics is designed considering the principle of simple and easy—to—use. According to the mechanical characteristics of springs, relevant parameters can be extracted and calculated and analyzed. It can also provide accurate basic models and data for subsequent computer—aided analysis and spring manufacturing, and greatly improve the efficiency and quality of spring three—dimensional model creation. According to the principle of secondary development based on NX Open API, the basic functions of setting up secondary development environment, designing secondary development form and debugging secondary development program are discussed. On this basis, fast design method of three —dimensional spring is proposed, and the key technologies in the process of development and implementation are also discussed in detail, such as program structure, interface, and logic flow chart. The design results meet the requirements of theoretical calculation, it can provides support for secondary development based on NX.

Keywords: spring design; secondary development; NX Open API

0 引言

NX 是 Siemens PLM Software 公司出品的一个产品开 发解决方案,通过为用户提供面向设计、仿真和制造的高 性能集成解决方案,实现整个产品开发过程的转型^[1]。

弹簧由于能吸收振动和冲击能量,且具有自动复位的 功能,所以弹簧广泛应用于液压阀门、车辆减振装置、冲 压设备的复位机构和枪械、火炮等机械设备中。随着数字 化设计与制造技术的迅速发展,弹簧零件的手工设计步骤 繁琐、工作量比较大并且容易出错,效率低、成本高,已 不能满足新的设计模式与生产模式需要。

弹簧的设计计算属常规设计,但在三维模型设计过程

收稿日期:2019-08-27; 修回日期:2019-09-05。

作者简介:白海滨(1970-),男,内蒙古呼和浩特市人,高级工程师,主要从事信息安全管理工作方向的研究。

中,计算繁琐,建模复杂,较适合 CAD 开发,因此利用三 维 CAD 技术开发弹簧模型自动生成工具是必要的,也是可 行的。

结合当前制造行业三维 CAD 的应用状况,选择基于 NX 软件进行三维弹簧设计软件开发,提高弹簧设计质量和 效率。利用三维弹簧设计软件,输入相关参数,软件进行 几何参数计算,几何参数通过驱动弹簧设计模板生成三维 弹簧模型,并进行变形处理。

通过二次开发,直接提供特征参数输入界面,通过参数的交互输入,进行几何参数计算,并驱动设计模板生成 三维零件模型,简化了零件设计流程,规范了零件特征结构,节省设计时间,提高工作效率^[2-3]。

本文在论述了基于 C # 的 NX10 二次开发的环境设置、 二次开发窗体设计以及二次开发的程序调试等模块设置, 以矩形压缩弹簧为例,进一步说了基于 C # 的 NX10 二次开 发方法及机械零件参数化设计的实现过程。

1 基于 C # 的 NX 二次开发主要技术

1.1 二次开发环境设置

在NX众多的二次开发技术中,NX Open API 是 NX 提供的一个高级二次开发编程语言工具集,几乎所有能在 NX 界面上的操作都可以调用相应的 NX Open API 函数来 实现,并同 NX 进行无缝连接,从而扩展 NX 的功能,使其 更具专业化^[4-5]。其中 C # 是面向对象的编程语言,作为一 种解释性语言,编译的程序可以在 32 位与 64 位系统中完美 运行,而且其操作方便易懂、语法简明。

二次开发环境设置主要包括开发工具配置和开发环境 设置。

1.1.1 开发环境设置

基本环境变量:环境变量在 NX 的运行过程中有着重要 的应用,一些环境变量在安装 NX 之后便已经设置。其中最 常用的基本环境变量包括:

UGII_BASE_DIR: NX 安装的文件夹路径;

UGII_ROOT_DIR: NX 安装文件夹中 UGII 的位置; UGS_LICENSE_SERVER: 28000@####### (IP 地址或主机名);

UGII_LANG: ENGLISH.

其它常用的环境变量在 ugii_env_ug. dat 文件中定制。该文件默认位于 UGII_ROOT_DIR 目录下。用户可以修改同目录下的 ugii_env.dat 文件。添加一些环境变量 覆盖已有的环境变量以控制 NX 的运行方式该文件可以通 过环境变量 UGII_ENV_FILE 进行设定。

命令行环境变量设置:编辑%UGII_BASE_DIR%/ UGOPEN/ufvars.bat,设定MSVCDir到正确目录。具体 配置如下所示:

Rem Your might install them in a different location.

Rem

Rem set MSVCDir=C:/Program Files/Microsoft Visual Studio/VC98

Rem set MSVCDir=C:/Program Files/Microsoft Visual Studio .NET/Vc7

Rem set MSVCDir=C:/Program Files/Microsoft SDK Rem NX7

Rem set MSVCDir=C:/Program Files/Microsoft Visual Studio 8/VC

Rem set MSVCDir=C:/Program Files(x86)/Microsoft Visual Studio 8/VC

Rem set MSVCDir=C:/Program Files/Microsoft Visual Studio 9/VC

Rem set MSVCDir=C:/Program Files(x86)/Microsoft Visual Studio 9/VC

Rem NX8.0/NX8.5 wntx64

Rem set MSVCDir=C:/Program Files/Microsoft Visual Studio

10/VC

Rem NX8.0/NX8.5 wntx32

Rem set MSVCDir=C:/Program Files(x86)/Microsoft Visual Studio 10/VC

Rem NX9.0/NX10.0 wntx64

Rem set MSVCDir=C:/Program Files/Microsoft Visual Studio 11/VC

Rem NX9.0/NX10.0 wntx32

Rem set MSVCDir=C:/Program Files(x86)/Microsoft Visual Studio 11/VC

1.1.2 应用向导创建

开发工作开始前需对 NX10.0 以及 Visual Studio 2010 进行配置。Project Wizard 是 NX 为用户提供的向导自动生 成开发工程的工具,其 VC # 开发向导保存在% UGII_ BASE_DIR%/UGOPEN/vs_files/VC # 目录下,复制% UGII_BASE_DIR%/UGOPEN/vs_files/VC # /CSharp Projects 文件夹中所有的文件到 Microsoft Visual Studio2010/VC # /CSharp Projects 目录中;复制% UGII_BASE _DIR%/UGOPEN/vs_files/VC # /VC # Wizards 文件夹 中所有的文件到 Microsoft Visual Studio2010/VC # /VC # Wizards 目录中。

在 NX10.0 命令提示符窗口执行"devenv"运行 VS2010,在 Visual C # 工程模板中选择 NX10 Open C # Wizard 向导创建工程。

图1 向导创建

利用向导创建的程序由"引用"和"主程序"两部分 组成:其中"引用"中包含了NX自带的函数库(如NX-OPEN.dll等)和程序中的数据包(如System等)。"主程 序"的默认名称为 mycalss.cs,主要负责执行程序的开始、 调用及结束。调用的程序一般写在窗体程序中,窗体通过 主程序激活。

1.2 二次开发窗体设计

采用 NX Block UI Styler 制作对话框,使用 Block UI Styler 可以生成包含文本输入、参数输入、目标选择、按钮 响应、图片插入等要素的对话框,完全支持 NX 操作。创建

对话框后,生成C#语言源程序代码文件(.cs文件)与 NX对话框文件(.dlx文件)。其中.cs文件需要通过API 进行编译,生成动态链接库即可以在NX中执行的.dll 文件。

通过 Block UI Styler 设计的对话框文件是后缀名为 "dlx"的文件通常称其为 DLX 文件。从文件格式上来说 . DLX 档是一个标准的 XML 文件,包含了在运行时构建对 话框的所有信息客户应用程序使用了 DLX 对话框文件和编 译生成的 DLL 文件一样,都需要放置在开发根目录的 Application 路径下,提供给 NX 运行时加载使用。

Block UI Styler 用户接口主要包含以下几个部分:菜单工具栏,配置对话框,包括布局设计器,属性编辑器,代码生成管理器。

组块目录如图2所示。

图 2 组块目录

1.3 二次开发程序调试

第一次运行程序调试时,需要将程序附加到 NX 进程 中,在"工具"选项下选择"附加到进程"。

在弹出的窗口中,选择 NX10 进程,单击"附加"完成。此时,运行调试命令,程序将启动 NX10 软件,同时程序将自动生成动态链接库文件(*.dll)。激活 NX10,按下 Ctrl+U,将弹出调试串口,选择动态链接库文件,完成调试操作。

程序调试没有问题后,需要对应用程序进行签名后, 才能正式发布,应用程序签名主要包括:添加 NXSigningResource.res 到方案中,编译成功后,执行 SignDot-Net.exe,也可以设定在方案中的 Post-Bulid event 来自动 执行签名。

2 开发实例

2.1 程序结构

弹簧设计向导工具在 NX 建模环境下具备快速打开的 接口,并能方便的选择所需设计的弹簧零件向导工具。提 供与 NX 一致的交互式、向导式用户界面,并通过指定矢量 和点指定弹簧在三维 NX CAD 模型空间的位置,包括矩形

自动: 打	£管(4.5、4.0 版) 代码			选择(S)
ID	标题	大型	用户名	会话
1892		x86	H5\VMPLMFinde	1
1636		x64	H5\VMPLMFinde	1
1644	开始	x64	H5\VMPLMFinde	1
1788		x86	H5\VMPLMFinde	1
1300		x64	H5\VMPLMFinde	1
3592	NX 10 - 基本环境 - [exemple.pz	rt (托管(v4	H5\VMPLMFinde	1
1844		x64	H5\VMPLMFinde	1
	自动: 打 ID 1892 1636 1644 1788 1300 3592 1844	自动: 托管 (4.5、4.0 版)代码 10 【标题 1882 1835 1844 开始 1788 1930 3592 数7 10 - 基本环境 - {exeeple.pr 1844	自訪: 托管(4.5、4.0 版)代码 10 【存量	自動: 托管(4.5、4.0 節)代码 <u>10 存益 </u>

图 3 调试串口

压缩弹簧、矩形拉伸弹簧、扭簧、多股压缩弹簧、多股拉 伸弹簧和片簧等六种类型的定义、参数的输入界面、几何 参数的计算结果显示界面。利用交互式用户界面,通过对 弹簧名称的定义、弹簧位置的确定、弹簧参数化的输入以 及显示结果的检查,将自动生成矩形拉伸弹簧三维模型, 并同时完成对弹簧三维模型的变形处理^[6],以上六类弹簧 的输入输出参数如表 1~6 所示。

表1 矩形压缩弹簧输入输出参数

输入参数	输出结果
提供弹簧旋向的定义,包括:	1)弹簧中径
1)左旋	2)钢丝直径
2)右旋	3)自由高
提供弹簧样式的下拉选择,包括:	4)有效圈数
1)圆柱形	5) 总圈数
2)矩形	6)螺距
提供端部结构的下拉选择,包括:	7)展开长度
1)并紧磨平	8)螺旋角
2)并紧不磨平	9)曲度系数
3)不并紧。	10)高径比
提供如下参数的输入:	
1)钢丝直径	
2)矩形长	
3)矩形宽	
4)折弯半径	
5)自由高度	
6)有效圈数	
7) 总圈数	

表 2 矩形拉伸弹簧输入输出参数

输入参数	输出结果
提供弹簧旋向的定义,包括:	1)弹簧中径
1)左旋	2)垂直边长
2)右旋	3)平行边长
提供端部结构的下拉选择,包括:	4)有效圈数
1)圆钩环	5)自由高度
2)半圆钩环	6)展开长度

续表 2

输入参数	输出结果
3)圆钩环压中心	7)螺旋角
提供如下参数的输入:	8) K
1)中间直径	
2)垂直边长	
3)平行边长	
4)有效圈数	

表 3 扭簧输入输出参数

输入参数	输出结果
提供弹簧旋向的定义,包括	1)弹簧中径
1)左旋	2)材料直径
2)右旋	3)有效圈数
提供端部结构的下拉选择,包括:	4)自由角度
1)外臂扭转弹簧	5)簧丝间隙
2)内臂扭转弹簧	6) 臂长 t ₁
3)中心臂扭转弹簧	7) 臂长 t ₂
4)平列双扭弹簧	8)螺距
5)直臂扭转弹簧	9)自由长度
6)单臂弯曲扭转弹簧	10)展开长度
提供如下参数的输入:	11)螺旋角
1) 扭簧中径	
2) 簧丝间隙	
3) 臂长 t ₁	
4)臂长 t ₂	
5)钢丝直径	
6)自由角度	
7)有效圈数	

表 4 多股压缩弹簧输入输出参数

	输出结果
提供弹簧旋向的定义,包括	1)弹簧股数
1)左旋	2)弹簧中径
2)右旋	3)钢丝直径
提供端部结构的下拉选择,包括:	4)钢索拧角
1)不并紧	5)自由高度
2)并紧	6)有效圈数
提供钢丝股数的下拉选择,包括:	7)钢索直径
1)2	8)多股簧螺距
2)3	9)钢索长度
3)4	10) 螺旋角
提供如下参数的输入:	11)每股钢丝长度
1)多股簧中径	
2)钢丝直径	
3)自由高度	
4)钢索拧角	
5)有效圈数	
6)支撑圈数	

	输出结果
提供弹簧旋向的定义,包括	1)弹簧中径
1)左旋	2)钢丝直径
2)右旋	3)钢索拧角
提供端部结构的下拉选择,包括:	4)有效圈数
1)圆钩环	5)钢索股数
2)半圆钩环	6)自由高度
3)圆钩环压中心	7)展开长度
4)并紧	8)螺旋角
提供钢丝股数的下拉选择,包括:	9) K
1)2	
2)3	
3)4	
提供如下参数的输入:	
1)中径直径	
2)钢丝直径	
3)钢索拧角	
4)有效圈数	

表5 多股拉伸弹簧输入输出参数

表 6 片簧输入输出参数

输入参数	输出结果
提供结构的下拉选择,包括:	1)圆形半径
1)悬臂片弹簧	2)悬臂长度
2)悬臂三角片弹簧	3)弹簧宽度
3)1/4 圆形片弹簧	4)簧片厚度
4)半圆形片弹簧	5)抗弯截面系数
5) 成型片弹簧 1	6)惯性矩
6) 成型片弹簧 2	
7) 成型片弹簧 3	
8)成型片弹簧4	
9)成型片弹簧 5	
10)成型片弹簧 6	
提供如下参数的输入:	
1) 簧片钣金	
2)簧片宽度	
3)簧片厚度	
4)悬臂长度	

典型弹簧设计向导结构方案如下。

2.2 接口

在 NX 环境中,创建典型弹簧三维设计、弹簧简化视图 的接口,方便调用。

2.3 逻辑流程图

在 NX 建模环境中,选择"典型弹簧三维设计"菜单, 在弹出的下拉菜单中选择"XX 簧",或者在"典型弹簧三 维设计"工具条中选择"XX 簧"图标,即可进入相应的弹 簧向导界面;

在弹簧向导界面中"名称与位置"步骤,在"弹簧名称"控件中输入弹簧的名称,在"指定矢量"和"指定点"

图 4 设计向导结构

控件中选择弹簧旋转的方向及放置位置;

进入"输入参数"步骤界面,进行一些参数的选择或 者输入,在"旋向"控件中可选择"左旋"或者"右旋"。 在"弹簧样式"中可选择"矩形"或者"圆柱形",在"端 部结构"控件中,选择"并紧磨平"、"并紧不磨平"、"不 并紧"三种端部情况。然后在"输入参数"中输入:中间 直径、自由高度、有效圈数等弹簧参数;

进入"显示结果"步骤界面,在此步骤中,可以查看 弹簧的相关输入参数及一些计算参数,若符合设计要求, 点击完成即可生成相应的弹簧三维模型。若不符合则可以 点击"上一步"进行参数修改;生成相应的弹簧三维模型。

图 5 典型弹簧三维设计逻辑流程图

2.4 设计实例

以矩形压缩弹簧为实例,主要包括建立弹簧相关参数 表达式,创建弹簧三维模型,进行二次程序开发。矩形压 缩弹簧按钢丝旋转方向可分为左旋和右旋,按弹簧横截面 可分为圆柱形截面和矩形截面,按端部结构可分为端部不 并紧、端部并紧、端部并紧并磨平。在进行参数表达式建 立以及二次开发时,都要能够满足。

建立弹簧相关参数表达式,基于表达式驱动创建弹簧 三维模型。

لاعتر عبر المراجع کیتر 1 spring_H0 + spr 3*spring_b/4*2 101 cos(spring_direc cos(spring_direc sin(spring_direc 20 30 40	ing_trimH * sp ct*spring_angl ct*(spring_ang ct*(spring_angle ct*(spring_angl	值 1 71 6 101 10 10 2.989 -4.68 3.724 20	● mm mm mm mm mm mm mm mm mm	类教教教教教教教教教教教教教教	1
الالت التي التي التي التي التي التي التي	ing_trimH * sp ct*spring_angl ct*(spring_angl t*spring_angle t*spring_angle t*(spring_angl	值 1 71 6 101 10 10 2.989 -4.68 3.724 20	単位 mm mm mm mm mm mm mm mm	美教教教教教教教教教教教教教教	
الالت ا spring_H0 + spr 3*spring_b/4*2 101 cos(spring_direc cos(spring_direc sin(spring_direc 20 30 40	ing_trimH * sp ct*spring_angl ct*(spring_ang t*spring_angle t*(spring_angl t*(spring_angl	值 1 71 6 101 10 10 2.989 -4.68 3.724 20	単位 mm mm mm mm mm mm mm mm	类数数数数数数数数数数数数数数数数	t
公式 1 spring_H0 + spr 3*spring_b/4*2 101 cos(spring_direc cos(spring_direc sin(spring_direc sin(spring_direc 20 30 40	ring_trimH * sp ct*spring_angl ct*(spring_angl t*spring_angle ct*(spring_angl t*(spring_angl	值 1 71 6 101 10 10 2.989 -4.68 3.724 20	● 中位 mm mm mm mm mm mm mm mm	类教教教教教教教教教教教教教教	1
لاغتر spring_H0 + spr 3*spring_b/4*2 101 cos(spring_direc cos(spring_direc sin(spring_direc sin(spring_direc 20 30 40	ing_trimH * sp ct*spring_angl ct*(spring_ang t*spring_angle ct*(spring_angl t*(spring_angl	値 1 71 6 101 10 10 2.989 -4.68 3.724 20	mm mm mm mm mm mm mm mm mm	美教教教教教教教教教教教教教教教教教	
1 spring_H0 + spr 3*spring_b/4*2 101 cos(spring_direc cos(spring_direc sin(spring_direc sin(spring_direc 20 30	ing_trimH * sp ct*spring_angl ct*(spring_angl ct*(spring_angl ct*(spring_angl ct*(spring_angl t*(spring_angl	1 71 6 101 10 2.989 3.724 20	mm mm mm mm mm mm mm mm	数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数	
spring_H0 + spr 3*spring_b/4*2 101 cos(spring_direc cos(spring_direc cos(spring_direc sin(spring_direc sin(spring_direc 20 30 40	ing_trimH * sp cct*spring_angl cct*(spring_angl cct*(spring_angl cct*(spring_angl tc*(spring_angl	71 6 101 10 10 2.989 -4.68 3.724 20	mm mm mm mm mm mm mm mm	数数数数数数数数数数数数数	
3*spring_b/4*2 101 cos(spring_direc cos(-spring_direc sin(spring_direc sin(spring_direc sin(spring_direc 20 30 40	ct*spring_angl ct*(spring_angl ct*(spring_angl t*spring_angle ct*(spring_angl t*(spring_angl	6 101 10 2.989 3.724 20	mm mm mm mm mm mm mm	救 救 救 救 救 救 救 救 救 救 救 救 救 救 救 救 救 救 救	
101 cos(spring_direc cos(-spring_direc sin(spring_direc sin(spring_direc sin(spring_direc 20 30 40	ct*spring_angl ect*(spring_ang ct*(spring_angl t*spring_angle ct*(spring_angl t*(spring_angl	101 10 10 2.989 -4.68 3.724 20	mm mm mm mm mm mm	<u>救</u>	
cos(spring_direc cos(-spring_direc sin(spring_direc sin(spring_direc sin(spring_direc 20 30 40	ct*spring_angl ect*(spring_angl ct*(spring_angl t*spring_angle ct*(spring_angl t*(spring_angl	10 10 2.989 -4.68 3.724 20	mm mm mm mm mm mm	<u>数</u> 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数 数	
cos(-spring_direc cos(spring_direc sin(spring_direc sin(-spring_direc 20 30 40	ect*(spring_ang ct*(spring_angl t*spring_angle ct*(spring_angl t*(spring_angl	10 10 2.989 -4.68 3.724 20	mm mm mm mm mm	数 数 数 数 数 数 量 量 量 量 量 量	
cos(spring_direc sin(spring_direc sin(-spring_direc sin(spring_direc 20 30	ct*(spring_angl t*spring_angle ct*(spring_angl t*(spring_angl	10 2.989 -4.68 3.724 20	mm mm mm mm	数	
sin(spring_direc sin(-spring_direc sin(spring_direc 20 30	t*spring_angle ct*(spring_angl t*(spring_angl	2.989 -4.68 3.724 20	mm mm mm	数量 数量 数量 数量	
sin(-spring_direc sin(spring_direc 20 30	ct*(spring_angl t*(spring_angl	-4.68 3.724 20	mm mm	数量 数量 数量	
sin(spring_direc 20 30	t*(spring_angl	3.724 20	mm mm	数量 数量	
20 30		20	mm	数量	
30					
40		30	mm	数量	
40		40	mm	数量	
zisFcurve		0		数量	
50		50	mm	数量	
40		40	mm	数量	1
30		30	mm	数量	
spring_t*spring_	_height	59	mm	数量	
-spring_b*spring	g_nz/2*spring_t	-4	mm	数量	
spring_b*spring	_nz/2*spring_t	63	mm	数量	
0		0		数量	÷
				•	
		长度			,
			m	m	•
				2 🗸	3
	_				
	-spring_b*sprin spring_b*spring 0	<pre>spring_b*pring_nt/2*spring_t spring_b*spring_nt/2*spring_t </pre>	spring_brspring_nt/2*spring_t -4 pring_brspring_nt/2*spring_t_ 63 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*prong_>rspring_nz/2*spring_t - 4 mm pig_b*spring_nz/2*spring_t - 63 mm 0 *5度 *5度 mm	*prong_b*spring_rv/2*spring_t - 4 mm 数量 ping_b*spring_rv/2*spring_t - 6 mm 数量 ping_b*spring_rv/2*spring_t - 6 mm 数量 * 5 mm 数量 * 5 mm か * 5

图 6 参数表达式

主要包括创建项目、编写代码、进行程序编辑与调试、 编制菜单文件,进行程序注册。

其中源代码最主要的就是建立程序与表达式之间的联系,使用C#语言与NX Open API完成表达式与程序之间 关系的建立,主要代码如下:

EDIT UG GATEWAY_MAIN_MENUBAR

AFTER UG HELP

! MENU INTEGRAT
 CASCADE_BUTTON_MENU_CLASSIC_PART_DESIGN
 LABEL 典型弹簧三维设计
 ! END_OF_MENU
 END_OF AFTER

MENU_MENU_CLASSIC_PART_DESIGN BUTTON BTN SPRING_Rectangle_Cylinder_Compression LABEL 矩形压缩弹簧 BITMAP Rectangle_Cylinder_Compression_Spring. bmp ACTIONS Rectangle Cylinder Compression Spring cs. dll

基于上述创建的表达式,利用 NX 的规律曲线命令创建 弹簧螺旋线,如图7所示。

图 7 螺旋线视图

利用草图命令创建弹簧矩形截面,再利用扫掠命令创 建弹簧实体模型,如图8所示。

图 8 截面及实体视图

2.5 实验结果与分析

二次开发调试完成后,可形成弹簧设计向导,本次以 矩形压缩弹簧为例,首先分析矩形弹簧的主要参数如下。

弹簧丝截面尺寸:垂直轴向方向的垂直边长a,平行轴 向方向的边长 b, 其对角线长度为 d;

弹簧外径 D: 弹簧的最大外径;

弹簧内径 D1: 弹簧的最小内径;

弹簧中径 D_2 : 弹簧的平均直径, 计算公式为: $D_2 =$ $(D+D_1) \div 2 = D_1 + a = D - a_0$

螺距 t: 除支撑圈外, 弹簧相邻两圈对应点在中径上的 轴向距离称为节距,用t表示。 $t=\frac{H_0-(1-2)d}{r}$ 。

有效圈数 n: 弹簧能保持相同节距的圈数。

支撑圈数 n2: 为了使弹簧在工作时受力均匀, 保证轴 线垂直端面,制造时,常将弹簧两端并紧。并紧的圈数仅 起支撑作用,称为支撑圈。一般有1.5、2 T、2.5 T,常用 的是2T。

总圈数 n₁:有效圈数与支撑圈的和。即 n₁=n+n₂。

自由高 Ho: 弹簧在未受外力作用下的高度。

其次明确弹簧的计算输出参数,主要包括螺距、展开 长度、螺旋角、曲度系数。

展开长度:绕制弹簧时所需钢丝的长度。L≈πD2 (2+

螺旋角: $\alpha = \tanh^{-1} \frac{t}{\pi D^2}$ 。 曲度系数: $K = \frac{4C-1}{4C-4} + \frac{0.615}{C}, C = \frac{D_2}{d}$ 。 高径比: $b = \frac{H_0}{n}$ 。

设定其几何参数为:中间直径 20 cm、垂直边长 1 cm、 平行边长4 cm、自由高度 65 cm、有效圈数 6、总圈数 8; 其特性参数为:工作高度1为59 cm、工作高度2为54 cm、 试验高度为 51 cm、工作载荷 1 为 15 N、工作载荷 2 为 30 N、试验载荷为 39 N。

根据输入的弹簧参数进行理论计算,可生成螺距 t= 9.83 mm、展开长度 L=502.65 mm、螺旋角 α=8.9、曲度 系数 K=1.32, 随后即可在 NX 环境内生成具体弹簧模型。

3 结论

从图 9 可以看出,应用此设计程序建成的矩形压缩弹 簧符合设计输入要求,其三维标注的参数与理论计算保持 一致, 目能便捷的生成二维简化弹簧图。

图 9 弹簧视图

本文应用基于 C # 的 NX OPEN API 二次开发的方法以 及三维零件参数化设计,最终实现了矩形压缩弹簧、矩形 拉伸弹簧、扭簧、多股压缩弹簧、多股拉伸弹簧和片簧等 6 种弹簧的快速设计以及弹簧简化视图。目前,已经在实际 产品设计过程中得到了应用和验证,大幅减少了设计师的 重复劳动,有效提升了常用弹簧设计效率和质量。

参考文献:

- [1] 侯永涛,丁向阳. UG/Open 二次开发与实例精讲 [M]. 北 京:化学工业出版社,2007.
- [2] 刘 斌,林俊义,黄常标.基于 Pro/Engineer 的参数化图库二 次开发 [J]. 机电工程技术, 2005, 34 (6): 86-87.
- [3] 刘 正. 基于 UG 的枪弹弹头一体化设计技术研究 [D]. 太 原:中北大学,2018:1-2.
- [4] 黄 翔, 李迎光. UG 应用开发教程与实例精解 [M]. 北京: 清华大学出版社, 2005.
- [5] 郑德星,徐 涛. 基于 NX/Open 和 MFC 的弹簧设计系统开发 [J]. 现代制造工程, 2013 (7): 109-110.
- [6] 张英会. 弹簧手册 [M]. 北京: 机械工业出版社, 2008.

 $n)_{\circ}$