文章编号:1671-4598(2020)01-0251-04

DOI:10.16526/j.cnki.11-4762/tp.2020.01.053 中图分类号:TB937 文献标识码:A

基于 MET/CAL 的数字示波器自动校准系统

· 余姗姗¹、宋 哲²

(1. 南京熊猫汉达科技有限公司,南京 210014; 2. 中国航天科工八五一一技术研究所,南京 210007)

摘要:自动测试软件平台 MET/CAL 是一款集资产管理、编辑校准程序及运行校准程序于一体的功能强大的自动化测试平台,为了充分应用该平台、编制符合实验室要求及操作步骤的示波器自动测试程序,开发了基于 MET/CAL 的数字示波器的自动校准系统;主要介绍了 MET/CAL 平台以及功能选择代码(functional select code, FSC),阐述了系统硬件的搭建与构成以及系统软件的开发要点,软件部分重点介绍了仪器识别模块、系统设置模块、测试项目选择模块、校准过程模块的编制和实现方法;最终通过自动测试结果与手动测试结果的比对验证了系统的准确性和可靠性,证明该系统完全满足预期使用要求。

关键词:MET/CAL;数字示波器;自动校准

Auto-Calibration System Based on MET/CAL for Digital Oscilloscope

Su Shanshan¹, Song Zhe²

(1. NanJing Panda Handa Technology Co., Ltd., NanJing 210014, China;

2. No. 8511 Research Institute of CASIC, Nanjing 210007, China)

Abstract: The MET/CAL platform, produced by Fluke, is a powerful auto calibration platform, which is consisted of asset management, program editor and runtime. To make the best of MET/CAL and to complete the auto-calibration for digital oscilloscope, the auto-calibration for digital oscilloscope based on MET/CAL platform was developed. This article gave a introduction of the MET/CAL environment and function selection code (FSC), details the hardware of the system and the development process of the software, especially focus on the models such as instrument identity, system setup, selection of calibration items, calibration process. In the end, the system' s accuracy and reliability can be verified by comparison between auto-calibration and manual operation in results and uncertainty.

Keywords: MET/CAL; digital oscilloscope; auto-calibration

0 引言

国际标准 ISO17025/10012 以及国内新颁布的 CNAS-CL07:2011《测量不确定度的要求》等文件对校准证书提出 了更加严格的要求,并把它作为衡量实验室校准和测试能力 的重要考核要求,这些要求给传统的人工校准带来了很大的 挑战,因此自动或半自动的校准是未来校准的发展趋势^[1]。

传统的数字示波器检定校准方法,需要检定人员按照 检定规程或校准规范的步骤进行操作,被检仪器和标准仪 器的操作与读数、计量结果的记录和处理均需人工来完成。 在数字示波器的校准中,由于校准点复杂,校准项目多, 容易引起诸如数据记录错误、仪器操作错误等失误;并且, 手动校准对检定人员提出了很高的要求,不仅要求掌握仪 器的使用方法、编制校准步骤、计算合格上下限,还要逐 点计算测量不确定度、整理原始记录;再者,手动校准之 后的证书是人为编制的,可信度低,不利于实现全面的质 量管理。因此,数字示波器自动校准系统软件的研究得到 了众多研究院所的重视。

目前,泰克、力科、安捷伦等国外示波器研发中心已开 发出多款示波器检定或校准软件,但是并未对外开放接口, 仅用于自身校准机构承接校准业务。福禄克公司研发的 MET/CAL 校准软件广泛应用于科研及计量单位,是目前主 流的校准软件,购买 MET/CAL 软件可同时购买福禄克公司 的软件包。但是福禄克公司编制的软件完全按照 ISO17025 国 际标准,与国内校准现状不符,为此用户需要根据自身需求 重新编制,该软件已经完成了用户权限管理、仪器信息登 记、超差提示、报表生成等机制,用户只需专注于测试过程 的设计,大大减少了程序设计人员的工作量。

研究发现,同公司同系列产品的校准方法、控制指令几 乎相同,故程序编制按照系列进行,即减少工作量又精准。

本文力图通过介绍校准系统硬件的构成,软件系统的选择、校准软件的设计、校准报告模板的设计等来阐述如何 快速地组建、设计自动校准系统。

1 系统硬件设计

系统的硬件框图如图 1 所示,由计算机、打印机、通 讯线、9500B 和被检示波器等组成,当 9500B 的时基等技术 指标不能满足被检示波器的要求时,需添加本地晶振等额 外标准设备。

校准程序通过 GPIB (general - purpose interface bus, GPIB) 等总线与被校示波器与 9500B 通信,命令被校示波 器及 9500B 进入所需功能或发出所需信号,再将最后结果 读数返回计算机程序并保存到数据库中,待所有校准点完 成后再调用报告模板打印校准报告。

收稿日期:2019-05-30; 修回日期:2019-07-11。

作者简介:苏姗姗(1988-),女,河北邢台人,硕士,工程师,主要 从事脉冲及光电测量方向的研究。

福禄克 9500B 示波器校准仪,可输出多种信号:直流 电压信号、方波信号、直流稳压信号、时标信号、快沿脉 冲信号等,也可以用于电阻参数、电容参数及频率参数的 测量,对于不同频带宽度的示波器选用不同探头即可(最 高为6 GHz),故在校准过程中可以完成直流偏置、直流增 益、频带宽度、时基、瞬态响应、输入阻抗、输入电容、 校准信号频率及校准信号电平等多个参数的测量,从而减 少校准过程中接换线,提高工作效率、减少误差^[2-3]。因此 9500B 是目前最适合用于数字示波器的标准器。

2 系统软件设计

2.1 MET/CAL 平台介绍

METCAL 平台由资产管理、编辑校准程序及运行校准 程序三部分构成,其中标准器资产及溯源信息在资产管理 平台完成,被检件信息的登记可以在资产管理平台事先登 记或在运行程序平台登记^[4]。

资产管理模块主要完成仪器的管理工作:标准器信息 及校准记录登记、被检件信息登记。标准器必须定期送上 级部门校准,且不可超期服务,如果超期,则当选定该仪 表做标准器时,程序便会报错。

在程序运行模块可以完成标准器的配置、校准子程序的选择、校准后报告模板的管理等。标准器的配置主要是标准器管理、设置 GPIB 接口地址、设置示波器选件。 RunTime操作界面如图 2 所示,点击 Calibrate 菜单中的 Run Procedure Executable 选项,选择对应型号的校准子程 序。在 Configure 菜单中可以完成诸如标准器设置等工作。

Calibrate Configure Break	Tools Help	
Calibrate	Rev:	
Run Procedure Executable		
unt-		
001.		

图 2 MET/CAL RunTime

MET/CAL EDITOR 是程序编辑器,如图 3 所示。在 程序的头部,自动记录程序的创建时间、创建人、该程序 所使用的标准器等信息。该软件可对程序进行仿真,同样 也可以完成标准器设置等工作。METCAL 的程序设计采用 FSC (function selection code)语言,是 METCAL 环境的 专用语言。

2.2 FSC 语言

功能选择代码(function selection code, FSC)语言是控制校准源、被校准设备、程序流程及运算等一系列指令的集

合,MET/CAL 校准命令(FSC)主要包含:过程控制类指 令(ASK 命令)、接口控制指令(IEEE, IEEE2, PORT, VISA, SCPI等)、仪器指令(对 9500B等标准发送的程控命 令)、显示指令(DISP、PIC等)、判断指令(EVAL等)、运 算指令(MATH等)等。具体分类介绍见表1^[5]。

表1 FSC 指令类别及描述

FSC类别	描述
仪器相 关类	用来控制标准器提供激励或从 UUT 采集反馈,自动生成描述设备连接状况及 UUT 所需的量程的信息等。 另外,仪器 FSC 还能够对 UUT 是否合格进行评价。
评估类	评估类 FSC 是一种与设备无关,用来执行评估操作的语句。
显示控	显示控制类 FSC 在校准过程中提供信息提示,常见指
制类	令有 DISP(显示文字), PIC(显示图片)等。
接口控	接口控制类 FSC 可通过操作 GPIB、网口、USB 或串口远
制类	程控制 UUT。常见指令有 PORT、IEEE、SCPI、VISA 等。
寄存器	寄存器操作类 FSC 用于存储、读取寄存器中的数据。
操作类	常见指令有 MATH
程序控 制类	程序控制类 FSC 用于控制程序的走向,此类语句不会
	进行任何测试也不会产生任何测试结果。常见指令有
	LABLE、JMPL、CALL 等
甘曲	其他类语句包括复位、设置系统参数、设定容差值、包
共祀	含溯源标准等其他功能的语句。

仪器相关类 FSC 语句由步骤号、FSC 指令等 10 个字段 组成。步骤号表示程序执行过程中的顺序,同时在程序跳 转等流程中起到标志的作用,如不填写会自动生成。FSC 指令字段填入 FSC 指令。量程字段用来设置 UUT 的量程, 标称值字段用来设置激励信号的标称值,容限字段用来设 置 UUT 的误差容限值。模式 1 (MOD1)到模式 4 (MOD4)字段用于不同 FSC 指令在不同情况下设置相应的配 置,连接字段 (CON)中填入连接信息^[1]。

2.3 软件实现流程图

数字示波器的校准过程包括:读取被校设备信息,登 记被校设备信息,选择校准项目,实施校准,校准结束后 生成测试报告等,具体流程图如3所示。

2.4 仪器识别模块

标准器的识别,通过标准器设置由 METCAL 自动完成,下述语句,强制程序在主程序表头,列出程序的基本 设置信息。

被检件的识别,主要通过 * IDN? 命令读取被检件的信息,具体实现语句表 2:步骤 1.001 发送 * IDN? 命令给被 检件,并将读回的信息(制造商,型号,序列号,固件版 本信息)放入寄存器 MEM2;步骤 1.002~1.004 将 * IDN?读回的信息分别提取出来,放入对应全局变量中;步 骤 1.005 为显示控制类 FSC,只出现在测试过程中,相邻 DISP 语句使用同一步骤号,表明是同一提示消息的不同行 显示类语句中的变量使用 [V 变量]的格式。

表 2 仪器识别模块指令

步骤	指令
1.001	VISA * IDN? [I\$]
1.002	MATH @Manufacturer = FLD(MEM2, 1, ",")
1.003	MATH @ModelNum = FLD(MEM2, 2, ",")
1.004	MATH @SerialNum = FLD(MEM2, 3, ",")
1.005	DISP 制造商: [V@Manufacturer]
1.005	DISP 型号: [V@ModelNum]
1.005	DISP 序列号: [V@SerialNum]

2.5 系统设置模块

在该部分主要完成不确定度的表现形式,超差是否提 醒,每个测试点的测量次数等设置。过程控制使用 ASK 命 令,系统参数的设置常使用 VSET 命令。

表 3 系统设置模块指令

步骤	指令
1.001	ASK+ K
1.002	ASK+ X
1.003	ASK- F
1.004	ASK- P
1.005	VSET NMEAS = 5
1.006	VSET $NTHROW = 1$

步骤 1.001 使能键入测试结果,并且激活不确定度计 算;步骤 1.002~1.004 表示当测量结果超差时,弹出提示 界面,在该界面可以选择重测或继续;步骤 1.005 设置校准 次数为 5 次;步骤 1.006 表示将第一次测量的数据舍弃。

2.6 校准项目选择模目模块

实验室校准项目和校准方法应满足客户的需求并适用 于所进行的校准^[2].对于不同的客户,校准的项目不尽相 同,在 METCL 中可已用利用列表框函数来实现项目的选 择,具体代码如表 4。

步骤	指令			
1.001	MATH @ItemList = LBNEW("选择计量项目")			
1.002	MATH LBCONF(@ItemList, "SelReq")			
1.003	MATH LBCONF(@ItemList,"+multi")			
1.004	MATH LBCONF(@ItemList,"+ok")			
1.005	MATH $@DCV1 = 0$			
1.006	MATH LBADDV(@ItemList,"直流增益","@DCV1")			
1.007	MATH LBSHOW(@ItemList)			

表 4 校准项目选择模块

步骤 1.001 建立一个以"选择计量项目"命名的列表框 步骤 1.002~1.004 设置对话框: 1.002 要求用户对列表内 容进行选择; 1.003 "multi"表示允许用户选择多项内容; 1.004 "ok"表示设置列表框的按钮为 Ok 和 Cancel;步骤 1.005 和 1.006 为列表框添加项目"直流增益",当用户选 择直流增益时,全局变量@ DCV 为 1,否则为 0;步骤 1.007 表示添加完项目后,列表对话框显示在界面中。

2.7 校准模块

校准模块的实现以直流增益为例进行说明。常用的直 流增益的校准方法有直流电压法和方波法,采用直流电压 法时,为了消除零点漂移,常常采用正负电压法和幅值减 零点法。该程序中依据厂家校准方法采用了幅值减零点 法^[6],具体实现步骤见表 5。

表 5 校准模块

步骤	指令
1.001	TARGET -p
1.002	TSET CPT = 5 V/div
1.003	VISA ACQ: MODE ETIME; TYPE AVERAGE; COUNT 64
1.004	VISA MEAS: SOURCE CHAN[V @Chan]
1 005	VISA TRIG: MODE EDGE; SWE AUTO; EDGE: SOUR
1.005	LINE
1.006	VISA CHAN[V @Chan]:SCAL 5V
1.007	TARGET -m
1.008	VISA CHAN[V @Chan]:OFFS 0V
1.009	9500 0.00V S
1.010	VISA [D500]MEAS:VAV? [I]
1.011	MATH $L[1] = MEM$
1.012	VISA CHAN[V @Chan]:OFFS 35V
1.013	9500 35.00V S
1.014	VISA [D500]MEAS:VAV? [I]
1.015	MATH MEM = MEM $- L[1]$
1.016	MEMCX 40 35.00V 0.70U

步骤 1.001 表示超差重复测量时,返回至本命令的下 一行;步骤 1.002 显示在证书上的说明性信息;步骤 1.003 到 1.008 分别设置被检件的采样模式、次数等,校准通道, 触发模式,垂直灵敏度、偏置电压,步骤 1.009 和步骤 1.013 用于设置 9500B 的输出电压和适配电阻; 1.010 和 1.014 设置读取结果前的延时时间,并将读取的结果放入寄 存器 MEM 中;步骤 1.015 表示将 35 V 对应的结果减去 0V 的漂移作为最后的结果;步骤 1.016 MEMCX 比较 MEM 和 MEM1 (35.00 V)的差,是否小于规定的被检表的允差 0.70U (0.7 V),判定测量结果是否超差并打印到报告。

3 结果验证

3.1 结果验证

在测试过程中,测试结果会实时存入 MET/CAL 的数 据库 Sybase 中,方便随时查阅数据,打印原始记录,直流 增益的校准结果如图 4 所示。

采用比对法对测量结果的可靠性进行验证,根据将自动测试的结果与手动测量结果进行比校,结果应满足公式(1)要求^[7]:

$$\mid y_1 - y_2 \mid \leq \sqrt{2}U \tag{1}$$

式中, y1 为手动测量值, y2 是自动测量值。

THE R. L. L. L. L. L. L.				
UUT Indicated	1 System Actual	C Modifier	Error	
4 10-				,
a (11				
35V	35V	N	0.00	ppm
14.0019V	14V	N	135	ppm
6.9994V	7V	N	-85.7	ppm
3.49997	3.5V	N	-28.5	ppm
1.4V	1.4V	N	0.00	ppm
699.85mV	700mV	N	-214	ppm
349.8mV	350mV	N	-571	ppm
139.867mV	140mV	N	-950	ppm
	UUT Indicated 35V 14.0019V 6.9994V 3.4999V 1.4V 699.85mV 349.8mV 139.867mV	UUI Indicated System Actual 35V 35V 14.0019V 14V 6.9994V 7V 3.9999V 3.5V 1.4V 1.4V 699.55mV 1.4V 49.004V 355mV 100mV 139.867mV 140mV	UUI Indicated System Actual C Modifier 357 357 N 14.00197 147 N 4.09947 77 N 3.9997 3.57 N 1.47 N 4.99947 147 N 4.99947 78 N 3.9997 N 3.9997 N 1.47 N 4.00197 N 1.47 N 1.	UUI Indicated System Actual C Modifier Error 35V 35V N 0.00 14.0019V 14V N 135 6.9994V 7V N -55.7 3.4999V 3.5V N -28.5 1.4V 1.4V N -22.5 1.4V 1.4V N -224.5 343.8mV 350mV N -571 139.867mV 140mV N -950

图 4 自动测试结果

影响测量结果的不确定度来源主要有:1)由于测量重 复性引入的不确定度;2)由于数字示波器分辨力引入的不 确定度;3)示波器校准仪的准确度引入的不确定度。选取 示波器校准仪输出值100 mV进行不确定度评定,被校仪器 需选择一台稳定性较好的示波器^[8-9]。

1) 由于测量重复性引入的不确定度分量 u_A(V_{N1}):

数字示波器对电压进行 6 次独立重复测量,测量结果 分别为: 100.1 mV,99.9 mV,99.8 mV,100.2 mV,100.1 mV,99.7 mV,99.97 mV,计算平均值为 99.97 mV,用贝 塞尔公式计算实验标准偏差

$$s(V) = \sqrt{\frac{\sum (x_i - \bar{x})}{n - 1}} \tag{2}$$

可得
$$s(V) = 0.20mV$$
,故: $u_A(V_{N1}) = \frac{s(V)/\sqrt{n}}{x}$

 $\frac{0.2/\sqrt{6}}{99.97} = 0.08 \%, \text{ } \text{ h B } v = n - 1 = 5.$

2) 由于数字示波器分辨力引入的不确定度 u_B(V_{N2}):

由数字示波器的技术指标可知,数字示波器测量 100 mV 电压的分辨力为 10 μ V,认为服从均匀分布,取 $k=\sqrt{3}$,用 B类方法评定的标准不确定度为:

$$u_{B}(V_{N2}) = \frac{10uA/2\sqrt{3}}{99.97mA} = 0.0029\%$$

3) 由于示波器校准仪准确度引入的不确定度分量 u_B(V_{N3}):

当输出值为 100 mV 时,示波器校准仪的最大允许误差为± (0.025% + 0.25 mV),认为服从均匀分布,取 $k = \sqrt{3}$,用 B 类方法评定的标准不确定度为:

 $u_B(V_{N3}) = 0.014\% + 0.25 \text{ mV}$

测量重复性引入的不确定度分量和仪器分辨力引起的不确 定度分量,通常只保留影响较大的值,因此舍去 u_B (V_{N2}),只 保留 u_A (V_{N1})和 u_B (V_{N3}),合成标准不确定度为:

 $u_c = \sqrt{u_A (V_{N1})^2 + u_B (V_{N3})^2} = 0.081\% + 0.25 \text{ mV 扩展}$ 不确定度可认为服从正态分布,取 P = 95%,包含因子 k = 2,则:

$$U = ku_{c} = 0.16\% + 0.25 \text{ mV}$$

由于篇幅限制,文中不再详细讲述其他校准点不确定 度的计算过程,最后手动测量结果与自动测量结果的比对 如表6所示,可知两者之差的绝对值均满足公式(1),因此 该数字示波器自动校准系统的可靠性及准确性得到了验证。

垂直分	标准估	毛动测导店	白动测导店	差值	$\sqrt{2}$ U	仕田
辨率	你们们	が催狂 「	日列侧里徂	$/\mathrm{mV}$	/mV	11 木
5 V/div	35 V	34.9991 V	35 V	0.9	79	Pass
2 V/div	14 V	14.0015 V	14.0019 V	0.4	31	Pass
$1 \mathrm{V/div}$	7 V	6.9991 V	6.9994 V	0.3	16	Pass
0.5 V/div	3.5 V	3.4997 V	3.4999 V	0.2	8.0	Pass
0.2 V/div	1.4 V	1.3995 V	1.4 V	0.5	3.2	Pass
100 mV/div	700 mV	699.89 mV	699.85 mV	0.04	1.6	Pass
$50\ \mathrm{mV}/\mathrm{div}$	350 mV	349.762 mV	349.8 mV	0.018	0.83	Pass
$20\ \mathrm{mV}/\mathrm{div}$	140 mV	139.851 mV	$139.867\ \mathrm{mV}$	0.016	0.35	Pass

表 6 自动与手动测试结果比对

3.2 证书报告的生成

METCAL系统使用水晶报表(Crystal Report)生成最 终的证书报告。在生成报告之前要选择证书模板,系统中 有自带模板,也可以选择自定义模板。由于各个单位原始 记录、证书都要求格式受控,普遍需要自定义模板。自定 义模板可在已有系统模板中修改。

表头中的测试项目、标准值等字段对应的是 Sybase 数据库字段,证书中最终记录的项目与校准程序中项目及顺序一一对应。报告正文样式如图 5 所示^[10]。

(下转第260页)