文章编号:1671-4598(2018)05-0037-05 DOI:10.16526/j.cnki.11-4762/tp.2018.05.010 中图分类号:TN911.7

7 文献标识码:A

# 运动相关脑电信号的运动意图预测方法研究

## 柳建光,袁道任,冯少康

(中国电子科技集团公司第二十七研究所,郑州 450047)

摘要:为了找出在大脑的后顶叶皮层区(PPC)运动意图预测与运动想象 EEG 信号之间的关联,联合运动相关电位 MRPs 与 mu/ beta 节律的事件相关同步/去同步(ERS/ERD)特征,首先用小波包分解 WPD 重构特征频段的小波包分解系数特征向量,其次采用共 空间模式 CSP 提取空域特征向量,最后利用支持向量机(SVM)进行运动意图预测;通过实验验证,联合运动想象信号中的运动相关电 位及 mu/beta 节律,运动意图预测分类准确率达到 85%;证实了运动相关 MRPs 可以表征运动准备即运动规划阶段的脑神经机制;10 Hz 以下的 mu 和 beta 节律 ERS/ERD 特征能够体现运动意图的方向;研究结论进一步为精细运动(包括运动方向、速度等其他运动参 数)预测提供技术支持。

关键词:脑电信号;运动相关电位;事件相关同步/去同步;运动意图预测

## Research on Prediction of Movement Intention Method Based on Movement—related EEG Signal

#### Liu Jianguang, Yuan Daoren, Feng Shaokang

(27<sup>th</sup> Research Institute of China Electronics Technology Group Corporation, Zhengzhou 450047, China)

**Abstract**: To find out how prediction of motor intention in the posterior parietal cortex (PPC) correlates with motor imagery EEG signal, this study joints movement—related potentials (MRPs) and the ERS/ERD features of mu/beta rhythm, in the first instance, wavelet packet decomposition (WPD) is proposed to reconstruct characteristic frequency band for feature vector of wavelet packet decomposition coefficients; moreover, spatial features vectors are extracted by common spatial patterns (CSP); in the end, support vector machine (SVM) as classifier is utilized to serve for predicting motor intention. Combining MRPs and mu/beta rhythm during motor imagery EEG signal, the classification accuracy is up to 85%. The result indicates that: 1) the brain nerve mechanism of movement readiness and movement planning stages can be characterized by MRPs; 2) the ERS/ERD features of mu/beta rhythm on low frequency components below 10 Hz carry information about intended movement direction. And the conclusions further offer a technological support for predicting meticulous movement intention including direction, speed and so on of movement parameters.

Keywords: EEG; MRPS; ERS/ERD; prediction of movement intention

### 0 引言

运动意图的神经解码已被广泛研究并应用于大脑运动皮质 (M1)的神经元活动,其神经元放电模式编码肢体运动的方向 信息的方式可用于目标动作预测<sup>[1]</sup>。研究表明,在运动规划和 执行过程中,后顶叶皮层区(posterior parietal cortex, PPC) 的运动相关电位扮演着重要的作用。

运动相关电位是一种慢性皮质电位,近年来运动意图检测 将其被广泛用于驱动脑一机接口系统外部设备。文献[2]通 过研究脑电图的时间动态特性,探讨了运动意图的基本原理。 文献[3]通过对九名受试者 EEG 中运动相关电位的实时检 测,可提高 BCI 系统的精度和实时性。文献[4-6]对健康受 试者和中风患者的一系列研究中,已经确定可以通过运动相关 电位检测到运动意图,其具有足够短的延迟以通过触发外周神 经引起皮质快速兴奋。在人类脑电信号解析方面,运动方向解 码虽然取得了一定的研究成果及突破。对于头皮脑电信号(electroencephalographic, EEG)的方向识别准确率比较低,一 般在 65%以下<sup>[7-8]</sup>,文献 [9]利用共空间模式和功率谱密度 算法识别左右脚运动意图监测,并获得 72.6%和 72.2%的分 类识别率。如何提取并优化提取 EEG 信号中的有效成分,用 于运动方向预测以及如何利用运动准备前(即运动规划阶段) 的 EEG 信号提高运动方向预测的正确率是目前国内外脑电信 号研究和运动方向预测的瓶颈之一。

想象运动和实际运动之间具有类似的神经机制,并且能够 通过想象运动相关的脑电信号识别参与想象运动的肢体类 型<sup>[10]</sup>,且运动前的神经活动或者伴随运动的神经活动编码了 运动的方向、速度和其他信息<sup>[11]</sup>。事件相关电位(event-related potentials, ERPs)在一定程度上反映感觉、知觉或认知 活动动态加工的过程,其中运动相关电位(movement – related potentials, MRPs)作为 ERPs 的一种,可以反映运动 准备、运动过程和运动结束的动态加工过程<sup>[12]</sup>;mu/beta节 律的事件相关同步/去同步(event – related (de) synchronization, ERS/ERD),用来反映运动前、运动过程中和运动结束 后感觉运动区能量的变化关系,其对侧化特征也可以反映参与 运动或想象运动的肢体类型<sup>[13]</sup>。

**收稿日期:**2017-09-08; 修回日期:2017-10-18。

**作者简介:**柳建光(1978-),男,高级工程师,主要从事生物电子技 术方向的研究。

为研究运动相关脑电如何表征运动意图预测,本研究通过 左、右手两任务运动想象实验范式,采集运动想象任务开始前 运动准备阶段的脑电信号,以及运动想象任务执行时的脑电信 号数据,通过联合 MRPs 与 mu/beta 节律的 ERD/ERS 特征, 采用 WPD-CSP 特征提取方法,利用支持向量机 (support vector machine, SVM)进行运动意图预测解码,根据运动意 图预测准确率验证提取运动意图特征的有效性。

#### 1 实验

11 名健康受试者参与实验,其中8 男3女,平均年龄26.4岁,硕士以上学历,工科背景。所有受试者皆为右利手,视觉与听觉均正常。除了受试者S1、S5、S6和S8参与过脑一机器接口EEG数据采集外,其他均没有EEG和BCI实验的经验,也没有受试者有已知的感觉运动疾病或心理病史。

#### 1.1 范式设计

实验开始前,受试者按自己舒适的习惯方式坐在椅子上, 处于放松状态,准备开始两种任务的运动想象实验。每种任务 包含 30 个 trial,每个 trial 包含 3 个阶段:运动准备阶段、运 动规划及运动执行阶段。



图 1 完整过程的刺激范式示意图

一次完整的实验过程如图 1 所示,运动准备阶段(起始时 刻 t=0 ms):刺激范式显示"+",提示受试者集中注意力, 准备实验;运动规划阶段(t=1 000 ms):单次运动想象任务 实验中,左、右两个任务(" $\dashv$ "、" $\vdash$ ")随机出现一次,持续 时间为 1 000 ms,提示受试者准备进行运动想象任务,受试者 身体保持静止状态;运动执行阶段(t=2 000 ms):范式出现 "~"或"→",提示受试者开始想象运动,持续时间为 3 000 ms。每组实验连续采集,实验期间加入短暂的休息提示,受 试者可适当休息。

#### 1.2 数据采集

本研究的数据采集设备为本研究机构自主研制的 16 导 EEG 放大器<sup>[14]</sup>, 0~100 Hz 带宽, 1 000 Hz 采样频率, 24 位 A/D转换器。

运动准备过程会诱发大脑额叶皮质区和初级运动皮层区的 电位变化,不同的受试者,关联通道会存在差异<sup>[15]</sup>。在本研 究中采用国际标准的 10-20 系统,主要采集运动功能区的 9 个电极 FC3、FCz、FC4、C3、Cz、C4、CP3、CPz 和 CP4, 如图 2 所示。

#### 2 信号处理及分类

算法和实验在 Windows XP 系统 Matlab R2012b 环境下实



现,配置环境为: Intel (R) Core (TM) i7-5500U CPU @ 2.4 GHz。

本研究的信号处理及分类算法设计由四部分组成:数据采 集、预处理、特征提取和分类识别。算法设计流程图如图 3 所示。



#### 2.1 数据预处理

数据预处理包括:降采样、陷波、去基线漂移、基线校 准、去眼电。具体如表1所示。

表 1 脑电信号预处理算法

| 脑电信号预处理算法                            |  |
|--------------------------------------|--|
| 1)对数据进行 250 Hz 降采样处理;                |  |
| 2)对数据进行 50 Hz 工频陷波处理;                |  |
| 3)对数据进行 FFT 0.5-45 Hz 的线性滤波去除基线漂移;   |  |
| 4)从 t=0 ms 时进行[-1 000 ms 2 000 ms]时间 |  |
| 窗截取数据段并进行基线校准;                       |  |

#### 2.2 特征提取及分类识别

#### 2.2.1 特征提取

本研究提出一种联合频域和空域特征的多维特征提取算法,首先对待分析脑电信号进行小波包分解<sup>[16]</sup>(wavelet packet decomposition, WPD),再重构;然后采用共空间模式(common spatial patterns, CSP)进行空域滤波特征提取<sup>[17]</sup>,实现时一频一空域的多维联合。WPD是一种高效的时频分析快速算法,通过多尺度小波分解,构建特征频段的小波包分解

系数特征向量; CSP 提取不同电极所采集的运动想象信号的 高维空域特征进行对角化,分别最大限度的最大化和最小化两 类方差。联合离散小波分解和共空间模式不仅能有效利用 WPD的时频特征,而且能弥补 CSP 缺乏频域信息等缺陷。

WPD 不仅将频带进行多层次划分,而且对高频部分也进 一步的分解,具有更好的时频特性,提高了运动想象 EEG 信 号的分析精度。以 db4 小波对每个导联的信号进行 6 层分解, 得到 S (6,0) - S (6,63) 共 64 个子带信号,其中 S (6, 0) 对应的子带频率为 [0 7.8] Hz,在 EEG 信号中,有关方 向信息主要集中在低频和高频部分,由于 EEG 信号通过颅骨 传输到头皮时出现高频的剧烈衰减,主要分析低频段数据,故 选取 S (6,0) 子带信号。

经 WPD 重构后得到一个具有频率特征的矩阵  $E_{H\times L}$ ,其中 H 是通道数, L 是采样点数, 归一化后的脑电数据的协方差矩 阵为:

$$C = \frac{\mathbf{E}\mathbf{E}^{\mathrm{T}}}{trace\left(\mathbf{E}\mathbf{E}^{\mathrm{T}}\right)} \tag{1}$$

使用  $C_1$  和  $C_2$  分别表示两种状态下的协方差矩阵,则合成的协方差矩阵  $C_i$ :

$$\boldsymbol{C}_t = \boldsymbol{C}_1 + \boldsymbol{C}_2 \tag{2}$$

又可以将  $C_i$  写成  $C_i = U_i \lambda_i U_i$ ,为矩阵  $C_i$  的特征向量, $\lambda_i$ 是相对应的特征值,通过该变化,特征值按照降序进行了排 列,与其对应的特征向量也重新进行了排列,经过白化变化 得到:

$$\boldsymbol{P} = \sqrt{\boldsymbol{\lambda}_t^{-1}} \boldsymbol{U}_t^T \tag{3}$$

则 C1 和 C2 的协方差矩阵变换为:

$$S_1 = PC_1 P^T, S_2 = PC_2 P^T$$
(4)

 $S_1$  与  $S_2$  有相同的特征向量,也就是如果  $S_1 = B\lambda_1 B^T$ ,  $S_2 = B\lambda_2 B^T$ ,并且  $\lambda_1 + \lambda_2 = I$ ,  $S_1$  与  $S_2$  有相同的特征向量 B, I是单位矩阵。由于两类矩阵特征值之和为 I,则  $S_1$  的最大特征 值所对应的特征向量使  $S_2$  有最小的特征值。

将白化后的 EEG 信号投影在特征向量 B 的最小和最大列 特征向量上,能够得到最佳的分类特征。投影矩阵为:

$$\boldsymbol{W} = \boldsymbol{B}^T \boldsymbol{P} \tag{5}$$

$$Z = WE \tag{(1)}$$

6)

CSP 投影矩阵用于训练分类器,只有少数信号 *m* 可以有 效区分各类别。能够最大区分的信号 *Z<sub>ρ</sub>* 通常为λ<sub>1</sub> 和λ<sub>2</sub> 的最大 值的对角化矩阵,其为 *Z* 的第一和最后 *m* 行。特征向量由下 列公式获得:

$$F_{p} = \log \frac{uar(Z_{p})}{\sum_{i=1}^{2m} uar(Z_{p})}, p = 1, 2, \dots 2m$$
(7)

在本研究中m = 3。

2.2.2 分类识别

对于单次实验运动意图脑电信号,具有高度的非线性和非 平稳性,可供学习的样本较少且与电极组合后样本特征向量维 度较高,降维则会损失有用的信息。SVM<sup>[18]</sup>利用非线性核函 数将输入空间的特征向量变换到一个高维空间,使样本线性可 分,在高维空间构造线性判别函数,建立一个超平面作为决策 曲面,使得正例和反例之间的隔离边缘被最大化,把样本空间 映射到高维空间,把低维空间的线性不可分问题映射为高维空 间的线性可分问题。

研究中采用径向基函数内核:  $K(x_i, x_j) = \exp(-g(x_i - x_j))^2$ ,作为 SVM 的核函数,核函数系数 g > 0,惩罚因子 C 则决定了 SVM 的收敛速度及推广能力,是影响 SVM 性能的 另一个重要参数。在 SVM 参数选取时采用网格法,首先设定 C 和 g 取值范围,然后进行网格划分,遍历网格内的所有取值 点,计算单次遍历的 C 和 g 参数下训练集的分类正确率,同时 利用五折交叉验证方法保证结果有效性,依次计算各次遍历点 选出分类正确率最高时对应的 C 和 g 的值即可。



#### 3 结果和讨论

#### 3.1 导联通道优化

采集多名受试者 EEG 信号,叠加平均 EEG 中的 ERP 成 分,绘制出一个 Trail 的脑地形图,分析时序关系和各个时刻 激活的相关区域,确定与运动准备相关的通道。其中受试者 S8 的脑地形图序列如图 5 所示,由图 5 所示,运动的起始时 刻为 2 000 ms,从运动起始前的 1 000 ms 开始绘制脑地形图, 每隔 100 ms 画一幅,观察大脑的激活脑区,在 1 000~1 100 ms 期间,大脑处于静息的状态,从 1 400 ms 开始,可观察到 大脑激活脑区开始有明显变化。在运动开始时刻前的 220~ 280 ms,内侧前额及额中央部观察到 ERP 的差异,这些活动 反映运动意图的预测过程。实验结果表明,本研究选取的 FC3、FCz、FC4、C3、Cz、C4、CP3、CPz 和 CP4 通道所覆 盖的后顶叶皮层区能够表征有关运动方向的信息。

如图 5 所示,运动开始前至少 500 ms (约 1 500 ms)出现 缓慢负向变化的运动准备电位可能反映了运动规划,运动想象 开始后出现由负电位向正电位变化可能反映了对运动的精细控 制,结果进一步证实了 MRPs 可以表征运动准备、运动规划 和运动执行的脑神经机制。

#### 3.2 MRPs 及 mu 和 beta 节律特征分析

针对右手想象运动脑电信号,分别计算 C3 和 C4 通道的 mu/beta 节律的功率谱变化,S8 受试者的 C3 和 C4 通道脑电信 号功率谱见图 6。

由图 6 结果可知,对于 C3 通道,右手想象时 mu 和 beta 节律的功率谱要比左手小,而对于 C4 电通道结果正好相反, 这就说明 ERD 也具有对侧半球优势。实验结果发现,在动作 发生前 10 Hz 频率附近的 mu/beta 节律会有能量递减变化。



图 5 不同时刻脑区激活的序列图



图 6 mu/beta 节律的功率谱

为了进一步细化研究运动想象信号中表征运动意图的频 段,将 S8 受试者的 C3 和 C4 导联的 MRPs 信号进行了 1~10 Hz 的时一频变换,时一频图谱如图 7 所示。



图 7 C3 通道和 C4 通道 MRPs 时一频图谱

图 7 的时一频图谱研究表明,运动规划和执行阶段 EEG 信号中的运动意图信息主要集中在低频段,通过对 11 名受试 者脑电信号时频图谱的比较分析,发现在 1~7 Hz 的信号中包 含运动方向的信息。

#### 3.3 分类结果

对左、右手想象数据进行预处理,采用 200 ms 的滑动时 间窗进行截取信号,对两类数据按照公式(1)到(7)求协方 差,求白化矩阵和空间源成分,寻找特征值最大和最小的空间 源成分对信号进行空间滤波,提取低频分量 MRPs 与 mu 和 beta 节律的有效的特征。本研究中每位受试者分别进行十组实 验,采用 SVM 算法进行分类识别,各次结果均为十折交叉检 验后的结果,分类识别率结果如图 8 和表 2 所示。



表 2 11 名受试者平均分类识别结果

| 受试者        | 平均识别率(%) |
|------------|----------|
| S1         | 72.2%    |
| S2         | 70.5%    |
| <b>S</b> 3 | 36.7%    |
| <b>S</b> 4 | 71.3%    |
| <b>S</b> 5 | 72.7%    |
| S6         | 74.3%    |
| S7         | 70.2%    |
| S8         | 76.3%    |
| S9         | 68.3%    |
| S10        | 69.8%    |
| S11        | 69.3%    |

由图 8 结果可知, 受试者 S3 对运动想象不敏感, 分类识 别率结果接近随机, 出现运动想象"盲"现象, 其余受试者 由于个体差异性, 分类识别率略有差异但基本稳定。根据图 8 和表 2 结果可知, 无脑一机接口实验经验受试者分类识别 率在 70%左右, 四名有运动想象经验的受试者平均分类识别 率为 74%左右, 最高可达到 85%。本实验结果与文献 [19] 中 Lakany 和 Conway 的两任务分类识别率相当, 高于文献 [7-8] 中的识别率。本文所提算法获得分类结果高于文献 [20] 中采用 ICA 和 SVM 算法所得结果, 验证了本实验的可 行性和有效性,同时也为下一步确定运动意图、解析动作状 态提供参考。

#### 结论 4

本研究以手部运动想象脑电信号为研究对象,以融合 MRPs 与 ERS/ERD 特征为途径,设计了包含时频域与空域的 特征提取算法,实现了手部运动意图预测,且识别正确率有了 显著提高,经过运动想象训练的受试者最高分类识别率达到 85%。初步验证了手部运动想象脑电信号能够解码运动过相关 电位信息,且集中在10Hz以下的低频信号成分中,为下一步 的运动精细控制提供技术支持。

然而仍有一些研究需要进一步明确:1)能否设计自适应 的算法进一步提升运动预测的准确率; 2) 结合运动准备电位 以及运动执行电位是否可以提高识别准确率; 3) 脑电信号能 否解码想象运动的运动速度、力的变化率和目标力大小、运动 轨迹等或参数。

#### 参考文献:

- [1] Hochberg L R, Serruya M D, Friehs G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia [J]. Nature, 2006, 442 (7099), 164-171.
- [2] Wairagkar M, Hayashi Y, Nasuto S. Movement Intention Detection from Autocorrelation of EEG for BCI [M]. Brain Informatics and Health. Springer International Publishing, 2015: 212-221.
- [3] Xu R, Jiang N, Lin C, et al. Enhanced Low Latency Detection of Motor Intention From EEG for Closed - Loop Brain - Computer Interface Applications [J]. IEEE Trans Biomed Eng, 2014, 61 (2) : 288 - 296.
- [4] Niazi I K, Jiang N, Tiberghien O, et al. Detection of movement intention from single - trial movement - related cortical potentials [J]. Journal of Neural Engineering, 2011, 8 (6): 066009.
- [5] Niazi I K, Mrachacz Kersting N, Jiang N, et al. Peripheral electrical stimulation triggered by self - paced detection of motor intention enhances motor evoked potentials []]. IEEE Trans Neural Syst Rehabil Eng, 2012, 20 (4) : 595-604.
- [6] Mrachacz Kersting N, Jiang N, Dremstrup K, et al. A Novel Brain - Computer Interface for Chronic Stroke Patients [M]. Brain - Computer Interface Research. Springer Berlin Heidelberg, 2014; 51 - 61.

[5] 楼小强,田 泽,徐文进,等. AFDX 网络 TAP 卡的设计与实现 (上接第36页)

备,完成了测试方案的论证。为后续 AFDX 网络的测试验证 基础提供了很好的保障。

#### 参考文献:

- [1] 叶佳宇, 陈晓刚, 张新家. 基于 AFDX 的航空电子通信网络的设 计 [J]. 测控技术, 2008, 27 (6): 56-58.
- [2] 刘永超,徐科华,周贵荣. AFDX 网络一体化测试监视系统研究 [J]. 航空电子技术, 2011, 42 (4): 29-32.
- [3] 刘永超,徐科华,周贵荣,等. AFDX 网络端系统测试监视系统 研究 [J]. 航空计算技术, 2011, 41 (4): 132-134.
- [4] 杨 峰, 田 泽. 基于 USB 接口的 AFDX 网络 TAP 卡设计与实 现[J]. 测控技术, 2013, 32 (5): 77-81.

- [7] Waldert S, Preissl H, Demandt E, et al. Hand movement direction decoded from MEG and EEG [J]. Journal of Neuroscience, 2008, 28 (4): 1000-1008.
- [8] 伏云发,徐保磊,裴立力,等. 基于脑电运动速度想象的单次识别 研究「J]. 中国生物医学工程学报, 2011, 30 (4): 555-561.
- [9] Kee Y J, Won D O, Lee S W. Classification of left and right foot movement intention based on steady - state somatosensory evoked potentials [A]. International Winter Conference on Brain - Computer Interface [C]. 2017: 106-108.
- [10] Pfurtscheller G, Neuper C. Motor imagery and direct brain computer communication [J]. Proceedings of the IEEE, 2002, 89 (7): 1123 - 1134.
- [11] Gu Y, Dremstrup K, Farina D. Single trial discrimination of type and speed of wrist movements from EEG recordings [J]. Clinical Neurophysiology, 2009, 120 (8): 1596-1600.
- [12] OF do Nascimento, KD Nielsen, M Voigt. Movement related parameters modulate cortical activity during imaginary isometric plantar - flexions [J]. Experimental Brain Research, 2006, 171 (1) : 78 - 90.
- [13] Neuper C, Wortz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation [J]. Progress in Brain Research , 2006 , 159 (1) ; 211-222.
- [14] 孙广金. 基于 ADS1299 的新型脑电采集系统设计 [J]. 科技信 息,2014(1):73-74.
- [15] Takahashi J, Yasunaga D. Reported visual imagery and apparent motion: an event - related potential study [J]. Neuroreport, 2012, 23 (15): 904-910.
- [16] Lin E B, Shen X P. Wavelet analysis of EEG signals. Aerospace and Electronics [A]. IEEE National Conference - NAECON [C]. 2011, 105 - 110.
- [17] 孟 明,朱俊青,佘青山,等.多类运动想象脑电信号的两级特 征提取方法「J]. 自动化学报, 2016, 42 (12): 1915-1922.
- [18] Müller KR, Krauledat M, Dornhege G, et al. Machine learning techniques for brain - computer interfaces [J]. Biomedical Engineering , 2004 : 11-22.
- [19] Sporns O. The human connectome: a complex network [J]. Ann N Y Acad Sci, 2011, 1224 (1); 109-125.
- [20] He Y, Chen ZJ, Evans AC. Small world anatomical networks in the human brain revealed by cortical thickness from MRI [J]. Cerebral Cortex, 2007, 17 (10) : 2407 - 2419.
- - [J]. 计算机技术与发展, 2014, 24 (6): 247-249.
  - [6] 索高华, 刘红红, 王 治, 等. AFDX 网络仿真系统设计与研究 [J]. 电子技术应用 2016, 42 (4), 18-21.
  - [7] 黄梦玲, 翟正军. 基于 ARINC429 与 AFDX 的测试仿真系统设计 与实现 [J]. 计算机测量与控制, 2013, 21 (8), 2090 -2092, 2108.
  - [8] 刘道煦, 吴华程. AFDX 终端测试技术的研究与实现 [J]. 计算 机测量与控制, 2014, 22 (5), 1360-1362.
  - [9] 王仲杰,蒋红娜. 基于飞行试验的 AFDX 总线采集技术研究 [J]. 国外电子测量技术, 2017, 36 (6), 85-88.
  - [10] 陈 昕,周拥军,蒋文保,等. AFDX 协议性能分析及调度算法 研究电子学报 [J]. 2009, 5, 1000-1005.