文章编号:1671-4598(2017)03-0143-03 DOI:10.16526/j.cnki.11-4762/tp.2017.03.039 中图分类号:TP3 文献标识码:A

基于 PXIe 总线的旋转可变差动变压器

信号仿真技术研究

稆 瑜,李熏圭,封锦琦,江继龙,张桂英

(中航工业北控所,北京 100176)

摘要:旋转可变差动变压器(RVDT)信号仿真设备在航空计算机的设计、调试和RVDT数据采集系统的校准等方面起着举足轻重的作用;文中通过对RVDT传感器工作原理深入的剖析,提出基于PXIe总线的RVDT信号仿真方法;文章重点研究了RVDT传感器工作原理及输出特性,阐述了RVDT仿真设备的设计和实现,最后使用RVDT数采板卡CPCI-75C3对RVDT仿真设备进行了验证,结果表明该设备仿真精度高,响应速度快,运行稳定。

关键词: RVDT 传感器; PXIe 总线; RVDT 信号仿真

Research on RVDT Signal Simulation Technology Based on PXIe Bus

Zhang Yu, Li Yanjie, Feng Jinqi, Jiang Jilong, Zhang Guiying

(Beijing Institute of Control Engineering, China Aviation Industry Co., Ltd., Beijing 100176, China)

Abstract: RVDT signal simulation equipment plays an important role in aviation computer design, commissioning and in the calibration of RVDT data acquisition system and so on. Through in-depth analysis theory of RVDT sensors work, the paper proposes RVDT signal simulation method based on PXIe bus. This paper focuses on the RVDT sensors work principle and output characteristics, expounds the design and implementation of RVDT simulation equipment. Finally using the north Atlantic company RVDT DAQ card CPCI-75C3, RVDT simulation equipment is verified, and the results show that the equipment is of high precision, fast response speed and stable operation.

Keywords: RVDT sensor; PXIe bus; RVDT signal simulation

0 引言

RVDT (rotary variable differential transformer) 是旋转可 变差动变压器的缩写,属于角位移传感器,即把机械部件的旋 转传递到角位移传感器轴上,带动与之相连的铁心,改变线圈 中的感应电压,输出与旋转角度成比例的电压信号。

RVDT 传感器在航空领域有着广泛的应用, RVDT 信号 仿真即模拟 RVDT 传感器的输出,此项技术在国外已经比较 成熟,并且有相关的产品,但是价格昂贵。国内对 RVDT 信 号仿真研究处于起步阶段,传统的 RVDT 仿真设备自适应差, 精度低。针对这些缺点,本文设计了控制精度高、能够灵活控 制位移量值连续扫描输出的 RVDT 仿真设备,目前已成功代 替驾驶舱操纵器件(如驾驶杆、驾驶盘、脚蹬等)向飞控系统 计算机发送的信号,协助完成飞控计算机的设计调试^[1-2]。

1 RVDT 传感器工作原理

RVDT 传感器的架构图,主要由一个原边线圈和两个副 边线圈组成,原线圈输入一固定频率正弦波信号,被测件运动 带动铁心移动,从而导致两个副边线圈所感应的电压振幅大小 不同,进而得出铁心的位置。如图 1 所示。

在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响), RVDT 传感器的等效电路如图 2 所示^[3]。

原边线圈的等效电感和等效电阻为 l、R; 副边线圈的等效

图 2 RVDT 传感器等效电路图

电阻分别是 R_a 、 R_b ,等效电感分别为 l_a 、 l_b ;原边线圈 l 与两个副 边线圈 l_a 、 l_b 之间的互感系数分别为 M_a 、 M_b 。原边线圈 l 加上 正弦交流电压 u 后,副边线圈产生感应电动势 E_a 和 E_b ,它们 的值与铁心在线圈内的位置有关。 E_a 和 E_b 做差便得到输出电 压 u_0 。为便于分析,忽略电阻的影响。

设施加在初级线圈上的激励电流 $i(t) = I \sin \omega t$,根据互感 原理,原边线圈 l 对副边线圈 l_a 和 l_b 的互感磁链 ϕ_a 和 ϕ_b 分别

收稿日期:2016-09-04; 修回日期:2016-11-02。

作者简介:张 瑜(1985-),女,河北保定人,硕士研究生,工程师, 主要从事航空测控方向的研究。

为:

$$\psi_a = i(t)M_a, \psi_b = i(t)M_b \tag{1}$$

感应电动势为:

$$E_a = \frac{d\psi_a}{dt}, E_b = \frac{d\psi_b}{dt}$$
(2)

将式(1)代入式(2)得:

$$E_a = \frac{M_a di(t)}{dt}, E_b = \frac{M_b di(t)}{dt}$$
(3)

当铁心处于中心位置时,原边线圈 l 对两个副边线圈 l_a 和 l_b 的互感相等,即 $M_a = M_b = M$,此时 $E_a = E_b$,输出电压 $u_0 = E_a - E_b = 0$ 。

由于两个副边线圈属于均匀密绕,当铁心位移变化 *X* 时,引起原边线圈对副边线圈互感的变化,则有:

$$\Delta M = KX \tag{4}$$

其中: K 为耦合系数。

$$M_a = M + \Delta M, M_b = M - \Delta M \tag{5}$$

设
$$X = A \sin \Omega t$$
, A 为机械运动的最大位移,此时:

$$E_a = \frac{di(t)(M + \Delta M)}{dt} =$$

$$MI \cos \omega t + IKA \sin \Omega t \cos \omega t + IKA \sin \omega t \cos \Omega t$$
$$E_{b} = \frac{di(t)(M - \Delta M)}{dt} =$$

 $MI\cos\omega t - IKA\sin\Omega t\cos\omega t - IKA\sin\omega t\cos\Omega t$

 $u_0 = E_a - E_b = 2IKA(\cos\omega t\sin\Omega t + \sin\omega t\cos\Omega t)$

两个副边线圈输出电压和 $E_a + E_b = 2MI \cos \omega t$,其有效值 为常数,如图 3 为 RVDT 传感器输出特性。

图 5 K V D1 传恩奋制击行性

本文选用美国 meas 公司的型号为 R30A 的 RVDT 传感器,由信号源提供 R30A 的激励信号 4Vpp,1 800 Hz,更直观的观察输出波形,如图 4。

综上所述,设 RVDT 传感器信号输出为 Va 和 Vb,则有

以下几个特点:

(1) V_a 和 V_b 频率相同,都等于激励的频率,两信号相位
 差为 0°;

(2) V_a 和 V_b 有效值相加为一常数,即增量相位差为180°;

(3) V_a和 V_b有效值分别与输出角度成线性关系。

2 RVDT 仿真设备的设计和实现

通过对 RVDT 传感器工作原理分析,得出 RVDT 传感器 输出特性,此特性可作为 RVDT 仿真设备信号输出的依据。 RVDT 仿真设备原理框图如图 5 所示。

图 5 RVDT 仿真设备原理框图

RVDT 仿真设备基于 PXIe 总线,背板带宽高达 6 GB/s, 仪器触发水平能达到 ps 级,可以极大地改善同步功能,从而 实现更高精度的测量。

图 5 中激励信号产生选择美国 NI 的 PXI-5412,输出幅值 1~12Vpp,可模拟输出频率范围 0~105 MHz,为 RVDT 仿真信号提供正弦载波。

图 5 中 DA (模拟输出) 板卡选择 PXIe-6738,输出幅值 -10~10 V,分辨率 16 位,板卡更新率 350 kS/s。PXIe-6738 共 32 通道, Va 和 Vb 各用一个通道,可仿真 16 路 RVDT 信号,通道间同步能达到 2 μ s。PXIe-6738 为 RVDT 仿真信号提供用于解算角度需要的 V_a 和 V_b 的幅值。

PXIe-6738 板卡自带 65535 个点的共用 FIFO, 先将角度 波形值写入 FIFO, 然后通过软件定时即可实现,降低对系统 实时性的要求。

图 5 中乘法模块包括接口电路和乘法功能模块,接口电路 的功能是将激励信号和 DA 的数据进行调理,以适应乘法功能 模块的输入要求。乘法功能模块是将激励信号和 DA 作乘法调 制,生成 RVDT 信号 V。和 V。,如图 6 所示。

接口电路采用 TI 的 TL062, 输入电压范围±15 V, 采用 高输入阻抗的 JFET,并且输出具有短路保护。

乘法功能模块采用 MPY634,是美国 BURR-BROWN 公司生产的高频带、高精度、四象限模拟乘法器,带宽达 10 MHz,在四象限范围内精度可达±0.5%。

3 RVDT 仿真设备的验证

为了验证 RVDT 仿真设备的正确性,本文采用美国北大 西洋的专业 RVDT 信号采集板卡 CPCI-75C3,板卡分辨率为 16 位,精度高达 0.025% FS。

设置 RVDT 仿真设备输出 $-30^{\circ} \sim 30^{\circ}$ 角度值,则根据角度 与电压值之间的线性关系,仿真设备输出相应的 V_a 和 V_b ,将

图 6 乘法模块电路设计电路图

V_a和V_b输入到 CPCI-75C3,解算出实测角度值。由表 1 可 看出, RVDT 仿真设备测试精度小于 0.2%,接近国外同等产 品水平。

图 7 是根据表 1 分析得到的,可以看出 V_a rms 和 V_b rms 分 别与角度值乘线性关系,并且增量相反,且 V_a rms 与 V_b rms 的和是一个常数,符合 RVDT 传感器的输出特性。

表1 RVDT 仿真设备测试结果比较

理论角度	75C3 实测角度值	精度	$V_{\rm a} { m rms}$	$V_{\rm b} { m rms}$
-30.00°	-29.9711°	0.05%	3.0622	1.3741
-24.00°	-23.9741°	0.04%	2.8932	1.5431
-18.00°	-17.9957°	0.01%	2.7242	1.7115
-12.00°	-12.0082°	0.01%	2.5559	1.8805
-6.00°	-6.06354°	0.11%	2.3868	2.0495
-3.00°	-3.08452°	0.14%	2.3027	2.1337
0.00°	-0.057°	0.10%	2.2178	2.2178
3.00°	2.967991°	0.05%	2.1337	2.3027
6.00°	5.954904°	0.08%	2.0495	2.3868
12.00°	11.94371°	0.09%	1.8805	2.5559
18.00°	17.93157°	0.11%	1.7115	2.7242
24.00°	23.91375°	0.14%	1.5431	2.8932
30.00°	29.90161°	0.16%	1.3741	3.0622

图 7 RVDT 仿真设备输出特性

设置角度按照 35 Hz 的正弦信号变化,观察 RVDT 仿真 设备的输出 V_a 和 V_b ,如图 8 所示。由图 9 可以看出 RVDT 仿 真设备输出 V_a 和 V_b 相位差为 0°,增幅相位差 180°,符合 RVDT 传感器工作原理。

图 8 角度按正弦变化值

4 结论

本文设计的高精度 RVDT 仿真设备不但能模拟飞机脚蹬 或驾驶杆的运动提供给飞控计算机进行分析控制^[2],还能模拟 出脚蹬或驾驶杆无法精确做出的正弦波,方波等运动信号,而 这些信号在飞机设计过程中也是很有必要的。目前该设备已成 功应用到某型飞机上,应用效果良好,具有较好的发展 前景^[4-6]。

参考文献:

[1] 胡寿松. 自动控制原理 [M]. 北京: 科学出版社, 2002.

- [2] 解思适. 飞机设计手册第 12 册 [M]. 北京: 航空工业出版 社, 2003.
- [3] 李 谡, 李 玲, 张 辉, 等. LVDT 传感器仿真电路的设计与 研究 [J]. 仪表技术, 2011, 9: 67-70.
- [4] 柯一春,盛承勋. AD598 的 RVDT 数据采集系统校准方法研究及 分析 [J]. 民用飞机设计与研究, 2013 (2), 109: 57-63.
- [5] 姚 丹. 一种 LVDT 精密测长仪的仿真研究 [D]. 大连: 大连理 工大学, 2009.
- [6] 吴朝华,黄月芳,赵砚博. 基于 PXI 总线的高精度 LVDT/RVDT 标准信号源的设计与实现 [J]. 计算机测量与控制,2013,21
 (8):2317-2320.