文章编号:1671-4598(2016)06-0174-04 DOI:10.16526/j.cnki.11-4762/tp.2016.06.048 中图分类号:P228.9 文献标识码:A

UNB3 模型的性能分析及在卫星定位的应用研究

温志群,刘立程,陈变娜,王 峰,杨永达

(广东工业大学信息工程学院,广州 510006)

摘要:卫星导航接收机的定位精度受大气对流层延时估计准确度的影响较大,因此提出在 RTKLIB 软件中利用 UNB3 对流层延时 模型替代现有的 Saastamoinen 对流层延时模型,以提高对流层延时的计算精度;通过对比分析的方法,对 Saastamoinen 模型和 UNB3 模型的对流层延时的误差精度进行了理论分析,并利用卫星导航实测数据进行对流层延时计算误差和伪距残差的性能对比分析,论证 所提出的替代方案的可行性;采用 UNB3 对流层延时模型的 RTKLIB 软件的定位精度比现有的定位精度有较好的提升。 关键词:对流层延时; UNB3 model; Saastamoinen model; RTKLIB

Performance Evaluation of UNB3 Model and Its Application to Satellite Positioning

Wen Zhiqun, Liu Licheng, Chen Bianna, Wang Feng, Yang Yongda

(School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China) **Abstract**: The positioning accuracy of satellite navigation receiver is effected by the accuracy of tropospheric delay model. This paper proposes that the use of UNB3 tropospheric delay model to replace the existing Saastamoinen' s in RTKLIB in order to improve the positioning accuracy. Through comparative analysis, both Saastamoinen tropospheric delay and UNB3 models are given theoretical analysis in their accuracy. And the use of satellite navigation data were measured to analyze their calculation error in tropospheric delay and pseudo-range residuals, which demonstrated the improvement of the proposed alternative. By using UNB3 tropospheric delay model, positioning accuracy in RTKLIB shows better results than the existing one.

Keywords: troposphere delay; UNB3 model; Saastamoinen model; RTKLIB

0 引言

在以 GPS 为代表的卫星导航定位系统中,GPS 接收机需 要获得从导航卫星发来的导航信号到地面接收机的传输时间等 参数,才能为用户提供精确的位置、速度等信息^[1]。而在卫星 导航信号传输的过程中,导航信号在经过地球大气的对流层时 产生的传输延时,对计算卫星信号到地面接收机的传输时间的 精度有很大的影响^[2]。如果该对流层延时不能被准确的估计, 则将造成所获得的信号传输时间的误差,进而影响到 GPS 接 收机的定位精度^[3]。因此,在对卫星导航信号的处理中,需要 获得尽可能准确的信号传输对流层延时的估计,目前通常是采 用合适的对流层修正模型来估计对流层延时^[4]。

目前,国内外在对流层延时估计方面所提出的常见对流层 修正模型包括 Hopfield 模型、Saastamoinen 模型、Black 模型 和 UNB3 模型等^[5]。在低仰角的情况下,这些模型的符合程 度较好,且模型的计算结果精度都比较高。其中 Saastamoinen 模型被在导航基带芯片的研发方面知名的 RTKLIB 开源软件 所采用^[6],作为该软件进行信号的对流层延时估计的修正模 型。但是,Saastamoinen 模型需要观测站位置对流层的气象参 数,但是一般观测站并不具备测量实际气象参数的条件,因此 该模型造成的对流层延迟误差相对较大,其适用范围也有一定

基金项目:广东省科技计划项目(2013B010401026)。

的局限性。而 UNB3 模型是一种对流层天顶处干燥和潮湿分量进行精确建模的方法,不需要实测的气象数据来计算对流层延时^[3],因此避免了由于气象参数变化带来的对流层延迟误差影响,提高了卫星导航定位接收机的定位精度。本文通过对比分析 Saastamoinen 模型和 UNB3 模型的对流层延时理论误差,并将 UNB3 模型的对流层延时计算方法替代 RTKLIB 软件中的 Saastamoinen 模型,利用实际观测数据进行了对流层延时计算误差对比,从而论证了在 RTKLIB 软件中用 UNB3 模型取代 Saastamoinen 模型的可行性。该结论将为不断完善卫星导航信号处理的流层延时修正模型,以获取更精确的对流层延时,从而进一步提高接收机的定位精度等方面提供了有益的参考^[7]。

1 模型介绍

1.1 Saastamoinen 模型

RTKLIB采用的对流层延时修正理论模型为 Saastamoinen 模型^[8],该模型将对流层分成两层:地表到 12 km 左右高度的 对流层顶,其气体温度随高程变化的递减率假设为 65℃/km; 第二层是从对流层顶到 50 km 左右的平流层顶,把大气温度假 设成常数。以测站纬度、实际湿度、观测仰角为变量的函数计 算出对流层延时^[9]。下面将该模型的对流层延迟计算公式简述 如下^[5]:

对流层延迟为:

$$T_r^s = \frac{0.002277}{\cos z} \left\{ \frac{p}{W(\varphi, h)} + \left(\frac{1255}{T} + 0.05 \right) e \right\}$$
(1)

其中:
$$z = \frac{\pi}{2} - E, W(\varphi, h) = 1.0 - 0.00266\cos(2\varphi)$$
 -

收稿日期:2015-12-02; 修回日期:2015-12-25。

作者简介:温志群(1994-),男,广东汕头人,本科,主要从事 GPS、 Matlab、数学建模方向的研究。

0.00028h, p 为气压, T 为绝对温度, e 为水汽分压, h 为测站高程, φ 为纬度, z 为天位角, E 为观测仰角。

Saastamoinen 模型需要观测站位置对流层的气象参数,但 是一般测站很难具备实测气象参数的条件,因此该模型在实际 应用中的局限性将对流层延迟的计算精度造成一定的影响^[10]。

1.2 UNB3 模型

UNB3 模型是一种对流层天顶处干燥和潮湿分量进行精确 建模的方法,不需要实测的气象数据来计算对流层延时。下面 将该模型的对流层延时^[11]计算公式简述如下:

对流层延时为:

$$T_r^s = m_{hyd} \cdot z_{dry} + m_{wet} \cdot z_{wet}$$
(2)

其中: z_{dry} 为对流层天顶方向的干燥分量, z_{veet} 为对流层天顶方向的潮湿分量, m_{hyd} 为对流层干延迟的映射函数, m_{veet} 为 对流层湿延迟的映射函数。

该模型所需的 5 个气象参数 压力 P (mbar)、温度 T (K)、水蒸气压力 e (mbar)、温度下降速率 β (K/m)和水蒸 气下降速率 λ (无量纲),可以通过将 UNB3 模型的年平均值 表中的值进行内插而得到^[11]。

2 模型的对流层延迟误差分析

根据误差传播律 $\sigma_z^2 = \sigma_d^2 + \sigma_w^2$,其中 σ_z 表示模型延迟精度, σ_d 表示干延迟精度, σ_w 表示湿延迟精度,可得到关于 Saastamoinen 模型的对流层延时^[12]计算误差公式:

$$\sigma_{\text{suas}}^{z^2} = \left(\frac{\partial}{\partial}\frac{\delta_{\text{suas}}^z}{\partial}\right)^2 \sigma_p^2 + \left(\frac{\partial}{\partial}\frac{\delta_{\text{suas}}^z}{\partial}\right)^2 \sigma_T^2 + \left(\frac{\partial}{\partial}\frac{\delta_{\text{suas}}^z}{\partial}\right)^2 \sigma_e^2 + \left(\frac{\partial}{\partial}\frac{\delta_{\text{suas}}^z}{\partial}\right)^2 \sigma_h^2 + \left(\frac{\partial}{\partial}\frac{\delta_{\text{suas}}^z}{\partial\varphi}\right)^2 \sigma_\varphi^2$$
(3)

其中: σ^{*}_{stas} 表示 Saastamoinen 模型延迟精度, δ^{*}_{stas} 表示模型 对流层延迟,均为各参数对应的测量误差。同理,对 UNB3 模 型,应用类似的方法可以得到 UNB3 模型的对流层延时计算 误差公式^[12]:

$$\sigma_{UNB3}^{z^2} = \left(\frac{\partial}{\partial}\frac{\delta_{UNB3}^z}{\partial}\right)^2 \sigma_p^2 + \left(\frac{\partial}{\partial}\frac{\delta_{UNB3}^z}{\partial}\right)^2 \sigma_T^2 + \left(\frac{\partial}{\partial}\frac{\delta_{UNB3}^z}{\partial}\right)^2 \sigma_e^2 + \left(\frac{\partial}{\partial}\frac{\delta_{UNB3}^z}{\partial}\right)^2 \sigma_h^2 + \left(\frac{\partial}{\partial}\frac{\delta_$$

其中: σ_{UNB3}^{2} 为 UNB3 模型延迟精度; δ UNB3为表示模型 对流层延迟; $\sigma_{p,\sigma_{T},\sigma_{e},\sigma_{h},\sigma_{\beta},\sigma_{\lambda}}$ 均为各参数对应的测量误差。

为了对比 Saastamoinen 模型与 UNB3 模型的对流层延时 误差的数值大小,下面假设在同一组参数及其测量误差值条件 下,推导计算出两个模型的对流层延时的误差大小。先以对流 层模型在应用中常见的一组参数 值为例,即假设:

P=1013 mbar, T=293.16 K, e=7.5 mbar, h=200 m, q40^o 将该组参数代入公式 (3), 可得:

$$\sigma_{saas}^{z} = \sqrt{\frac{0.\ 00241^{2} \cdot \sigma_{p}^{2} + 0.\ 00041^{2} \cdot \sigma_{T}^{2} + 0.\ 00986^{2} \cdot \sigma_{e}^{2} + 0.}{0.\ 00259^{2} \cdot \sigma_{n}^{2} + 0.\ 01357^{2} \cdot \sigma_{\varphi}^{2}}}$$
(5)

假设各参数的测量误差分别为: $\sigma_p = 0.5_{mbar}, \sigma_T = 0.1 \text{ K},$ $\sigma_e = 2 \text{ mbar}, \sigma_h = 2 \text{ m}, \sigma_{\varphi} = 0.001^\circ, 代入式 (5), 可得:$

2.042 cm.

为和上述 Saastamoinen 模型进行对比, 假设采用以上相同的参数值及 UNB3 模型自有的参数值:

 $\beta = 5.88 \times 10^{-3}$, $\lambda = 3.0$,将这些参数值代人式(4),可得:

$$\sigma_{UNB3}^{z} = \sqrt{\frac{0.\ 0022^{2} \cdot \sigma_{P}^{2} + 0.\ 0006^{2} \cdot \sigma_{T}^{2} + 0.\ 0091^{2} \cdot \sigma_{e}^{2} + }{0.\ 0003^{2} \cdot \sigma_{h}^{2} + 0.\ 5518^{2} \cdot \sigma_{\beta}^{2} + 0.\ 0195^{2} \cdot \sigma_{\lambda}^{2}}}$$
(6)

假设上述各参数的测量误差值不变,UNB3 模型自有参数 的测量误差值为: $\sigma\beta = 0.3 \times 10^{-3}$, $\sigma\lambda = 0.36$,代人式(6),可得:

 $\sigma^{\tilde{z}}_{UNB3} =$

$$\sqrt{\begin{array}{c} 0.\ 0022^2 \cdot 0.\ 5^2 + 0.\ 0006^2 \cdot 0.\ 1^2 + 0.\ 0091^2 \cdot 2^2 + \\ 0.\ 0003^2 \cdot 2^2 + 0.\ 5518^2 \cdot (0.\ 3 \times 10^{-3})^2 + 0.\ 0195^2 \cdot 0.\ 36^2} = \\ 1.\ 950 \text{ cm}$$

即在 UNB3 模型下的对流层延时误差约为 1.950 cm。

为了更好地对比两种模型的对流层延时计算误差,表1中 列出了在其它典型参数条件下(假设各参数的测量误差值不 变)Saastamoinen 模型和 UNB3 模型的对流层延迟的计算误 差^[13]。从该表可以看出:UNB3 模型的对流层延迟的误差通 常比Saastamoinen 模型的对流层延迟误差小 0.02 cm。

3 实例分析

本文的实例分析分为两种,其一是采用权威机构所提供 的对流层延时的准确数据作为基准参考,通过计算两个模型 的对流层延时的误差来进行对比分析;其二是将 RTKLIB 软 件中的分别采用 Saastamoinen 模型与 UBN3 模型时所得到的 卫星与接收机之间的伪距残差值进行对比分析。这些实例的 对比结果都论证了 UBN3 模型比 Saastamoinen 模型具有更好 的精度。

实例 1:下面利用 GPS 技术权威支持机构 Crustal Dynamics Data Information System (CDDIS) 网站所提供的自 2014 年 1月1日0时0分开始,GPS 观测站 Algonquin (Algonquin Park, Canada,代码 ALGO,纬度 45°581′,经度 281°56′)每 天每隔5分钟实时采样一次的误差小于4 mm 的精确对流层天 顶方向延时的数据作为基准,对比并评估两个对流层延时模型 的精度^[5]。

图 1 Algonquin 观测站某天的所有 288 个对流层延时标准数据

图 1 为在低仰角的条件下 Algonquin 观测站在某天采样得 到的所有 288 个采样点所对应的对流层天顶方向延时的大小 (以长度单位 m 来表示)。这些延时值将作为参考基准值供本 文中的 Saastamoinen 模型与 UBN3 模型进行各自对流层延时

表1 两种模型对流层延迟误差对比

气压	温度	水汽分压	温度下降速率	水蒸气下降速率	用户高层	纬度	模型延迟误差	UNB3 模型延迟
P/mbar	T/K	e/mbar	eta/ (K/m)	λ (无量纲)	$h/{ m m}$	arphi / (°)	/ cm	误差/cm
1 013.25	299.65	7.5	5.88 $\times 10^{-1}$	3.0	200	40	1.949	1.931
1 017.25	294.15	5.7	5.88 $\times 10^{-1}$	3.0	200	40	1.970	1.953
1 015.75	283.15	7.5	5.88 $\times 10^{-1}$	3.0	200	40	2.049	2.020

计算误差之用。

图 2 为采用 UBN3 模型来得到的计算对流层延时值与参考 基准值的误差。其误差范围在 3 cm 之内;图 3 为采用 Saastamoinen 模型来得到的计算对流层延时值与参考基准值的误差^[14]。 其误差范围在 8 cm 与 110 cm 之间;由图 2、图 3 的误差对比可 知,UBN3 模型的计算精度要优于 Saastamoinen 模型。

实例 2: 首先使用 Saastamoinen 模型,利用 RTKLIB 自带 的测试数据来得到卫星的伪距残差;然后,通过 Embarcadero C++ builder XE2 对 RTKLIB 的工程文件进行修改,从而在 RTKLIB 中使用 UBN3 模型对 RTKLIB 自带的测试数据来得 到卫星的伪距残差。图 4、图 5 均为 RTKLIB 软件运行结果的 计算机界面截图。

在图 4、图 5 中,列"SAT"表示卫星代号,列"PRN" 表示卫星序号,列"Azimuth"表示方位角,列"Elevation" 表示仰角,列"P1 Residual"表示伪距残差。对比图 4、图 5 可知,在接收机同时锁定的 8 颗卫星的伪距残差值中,在 UBN3 模型下得到的卫星的伪距残差有 2 颗大于 Saastamoinen 模型下得到的卫星的伪距残差,但同时有 5 颗小于 Saastamoinen 模型下得到的卫星的伪距残差。综合而言,UNB3 模型 获得的定位结果更佳。

4 结论

对流层延时对卫星导航定位接收机的定位精度性能影响较 大^[15],在卫星导航接收机的设计中需要采用合适的对流层修

	PS		 Only C 	К 🕶							Clos	e
SAT	PRN	Statu	Azimuth	Elevation	L1	L2	L5	Fix1	Fix2	Fix5	P1 Residual(m)	P
G05	5	OK	162.1	62.4	-	-	-	-	-		0.83	0.
G09	9	OK	40.3	49.1	-	-	-	-	-	-	0.84	0.
G12	12	OK	119.8	64.2	-	-	-	-		-	-1.01	0.
G14	14	OK	309.6	31.1	-	-	-	-		-	-0.22	0.
G15	15	OK	106.9	17.4	-	-	-	-		-	-0.96	0.
G18	18	OK	199.5	59.9	-	-	-	-	-	-	-0.69	0.
G22	22	OK	288.3	55.2	-	-	-	-		-	-0.17	0.
G30	30	OK	184.5	43.0	-	-	-	-		-	1.35	0.
1												•

图 4 Saastamoinen 模型下得到的卫星的伪距残差

OK		Elevation	L1	L2	L5	Fix1	Fix2	Fix5	P1 Residual(m)
	162.1	62.4	-	-	-	-	-	-	0.84
OK	40.3	49.1	-	-	-	-	-	-	0.83
2 OK	119.8	64.2	-	-	-			-	-1.00
ŧ OK	309.6	31.1	-	-	-	-	-	-	-0.23
5 OK	106.9	17.4	-	-	-		-		-0.92
3 OK	199.5	59.9	-	-	-	-	-	-	-0.69
2 OK	288.3	55.2	-	-	-	-	-	-	-0.15
OK OK	184.5	43.0	-	-	-				1.31
		2 OK 119.8 4 OK 309.6 5 OK 106.9 3 OK 199.5 2 OK 288.3 0 OK 184.5	2 OK 119.8 64.2 4 OK 309.6 31.1 5 OK 106.9 17.4 6 OK 199.5 59.9 2 OK 288.3 55.2 0 0K 184.5 43.0	2 OK 119.8 64.2 - 4 OK 309.6 31.1 - 5 OK 106.9 17.4 - 4 OK 199.5 59.9 - 2 OK 288.3 55.2 - 0 OK 184.5 43.0 -	2 OK 119.8 64.2 - 4 OK 309.6 31.1 - 5 OK 106.9 17.4 - 0 OK 199.5 59.9 - 2 OK 288.3 55.2 - 0 OK 184.5 43.0 -	1 0K 119.8 64.2 - - - 4 0K 309.6 31.1 - - - 5 0K 106.9 17.4 - - - 0 K 199.5 59.9 - - - 0 K 199.5 59.9 - - - 0 K 198.3 55.2 - - - 0 K 184.5 43.0 - - -	IDK 113.8 64.2 -	1 OK 119.8 64.2 - <td< td=""><td>10K 119.8 64.2 -</td></td<>	10K 119.8 64.2 -

图 5 UBN3 模型 卜得到的卫星的伪距残差

正模型来估计导航信号所经历的对流层延时,以获得精确的定 位信息。本文针对现有 RTKLIB 软件所采用的 Saastamoinen 对流层延时修正模型的对流层延时误差较大的问题,提出采用 UNB3 对流层延时修正模型来替代 Saastamoinen 模型,以进一 步提高对流层延时的计算精度。通过对该两种模型的对流层延 时误差的理论对比分析及利用实测数据进行了实际应用效果的 对比,论证了本文所提出的方案的可行性,为进一步提高卫星 导航定位接收机的伪距测量精度提供了有益的参考,具有较强 的工程实践意义。在此基础上,还可以继续对各种对流层延时 修正模型进行深入研究,不断提高该模型的计算精度。

参考文献:

- [1] 谢 钢. GPS 原理与接收机设计 [M]. 北京: 电子工业出版 社, 2009.
- [2] 姚宜斌.两种精化的对流层延迟改正模型[J].球物理学报, 2015,58(5):1492-1501.
- [3] Kaplan E D. Understanding GPS: principles and applications: second edition [M]. Beijing: Publishing House of Electronics Industry, 2007. 60-88.
- [4] 王新龙,李亚峰. GPS 定位中4种对流层延迟修正模型适应性分析[J]. 电光与控制,2008,15(11):8-9.
- [5] 张建龙. RTKLIB软件静态精密单点定位精度测试与分析 [J]. 全球定位系统, 2014, 39 (1): 40-41
- [6] 杨 祥. 一种综合的对流层延迟模型算法 [J]. 东南大学学报 (自然科学版), 2013, 43 (II): 419-421

- [7] 周命端. 对流层延迟改正 UNB3 模型及其精度分析 [J]. 测绘信 息与工程,2008,33(4):3-5.
- [8] 丁晓光. 对流层延迟改正在 GPS 数据处理中的应用与研究 [D]. 西安:长安大学,2009.27-30.
- [9] Collins P, Langley R, LaMance J. Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation [A]. Proceedings of the Institute of Navigation 52nd Annual Meeting [C]. Cambridge, MA, USA, 1996. 519-528.
- [10] Li W, Yuan Y B, Ou J K, et al. New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop [J]. Journal of Geodesy, 2015, 89 (1): 73-80.
- [11] Hopfield H S. Tropospheric effect on electromagnetically measured range: prediction from surface weather data [J]. Radio Science, 1971, 6 (3): 357-367.

(上接第151页)

TC08W1 = TC01W2 = "温度" + USBDateHelp.Fault();//蓄电 池温度1

Image3. ImageUrl = Image2. ImageUrl = "../images/图标/灯. gif";

}

```
else
```

TC08W1 = TC01W2 = hexnum1598;//蓄电池温度1

string hexnum2598 = USBDateHelp. FormatInToDecimalist (list598[12]. ID);

通过解析后的车上状态信息与故障信息,经过数据判读 后,以图形或者列表的形式显示在界面上,给现场操作负责人 提供决策依据。MVB数据会通过采集卡进行数据的采集,不 同的系统信息对应的端口号是唯一确定的,再对数据进行解 密,由于数据中包含多种类型的数据,我们需要先把多种类型 的数据进行数据解析,按照位偏置和字偏置的顺序,对每一位 进行单独的解析,根据需要展现的数据分别针对十六进制数、 八进制数、十进制数、ASCII 码等数值进行解析^[11]。

5 系统应用分析

通过系统的测试与应用,通过 MVB 网络解析设备,可以 进行车内复杂数据的提取与分析,并结合调试业务流程数据, 实现调试过程中的数据采集、分析与存储等过程的自动化,提 高整体调试效率。

结论 6

本系统通过 MVB 设备的数据采集实现了车上状态数据与 故障信息数据在调试流程自动执行与结果解析,本方法采用了 不同的设备状态数据域故障信息制定了对应的数据通信协议,

- [12] Leandro R, Santos M C, Langley R B. UNB neutral atmosphere models: development and performance [A]. Proceedings of the ION NTM 2006 Monterey [C]. California, USA, 2006, 564 - 573
- [13] Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites $\lceil Z \rceil$. The Use of Artificial Satellites for Geodesy, 1972.
- [14] Zumberge J F, Heflin M B, Jefferson D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks [J]. Journal of Geophysical Research. B, Solid Earth . 1997.
- [15] Han S C, Kwon J H, Jekeli C. Accurate absolute GPS positioning through satellite clock error estimation [J]. Journal of Geodesy, 2001(1).

并采用统一的数据接口实现了数据的传输和解析,车内数据的 类型与规则不一,需要以数据通信协议中的数据帧处理算法为 基础,在不同的平台和环境下组织对应的数据,通过标准化可 扩展的数据分析协议的研究,本方法可以的提高调试过程中数 据采集、分析、判定的效率,大大减少因操作问题而造成的主 观性质量问题。有效的实现了工艺流程的自动化,设备采集的 智能化水平。通过数据的解析与调试流程的自动执行。在综合 调试系统中设计了基于 MVB 数据车上状态的任务执行功能模 块和车上状态监控功能模块。所有的调试任务和要求都进行了 标准转化,在综合调试系统下,可以将设备需要进行测量的任 务进行提取和下发,综合调试系统实时通过接收的 MVB 车上 状态数据获取测试的车辆信息特征值,并根据特征值要求启动 相关的调试工艺流程,将测量完毕的数据与调试任务和要领书 进行自动关联存储,并按照标准的数据通信协议将数据进行发 送与接收。完成与调试设备的控制指令匹配的信号采集、处 理、传输和输出控制,为后续生产信息化水平提供了充分的技 术基础。

参考文献:

- [1] 戴 钢. 钢铁生产企业计量数据采集管理系统的设计与实现 [D]. 哈尔滨:哈尔滨工程大学,2004.
- [2] 付 乔. 移动无线传感器网络数据采集算法设计 [D]. 北京:清 华大学, 2013.
- [3] 周寅鹏. 离散型车间制造过程状态监控管理系统研究 [D]. 武汉: 武汉理工大学, 2013.
- [4] 庞希愚,姜 波, 仝春玲,等. 一种自适应数据变化规律的数据采 集算法 [J]. 计算机技术与发展, 2013, 02: 157-161.
- [5] 陈志锋,李清宝,王 炜,等.自动复位快速环树数据采集算法 [J]. 计算机科学, 2012, 10: 303-307.
- [6] 黄振华. 基于 Android 的 MES 实时数据采集方法的研究 [D]. 广 州:广东工业大学,2014.
- [7] 杜龙吉. SAP 与 MES 的系统集成研究与应用 [D]. 广州: 华南理 工大学,2014.
- [8] 郑 颖. 基于 MES 的实时数据库系统的设计与实现 [D]. 北京: 北京交通大学, 2008.
- [9] 王万雷. 制造执行系统 (MES) 若干关键技术研究 [D]. 大连: 大连理工大学,2006.
- [10] 李德芳,张朝俊,蒋白桦,等.面向流程企业的可配置 MES 体系 结构 [J]. 化工学报, 2010, 02: 352-358.
- [11] 谭竣菲. 面向 MES 的离散制造业车间生产管理研究 [D]. 重庆: 重庆大学,2007.