文章编号:1671-4598(2015)07-2302-03 DOI:10.16526/j.cnki.11-4762/tp.2015.07.018 中图分类号:TP3 文献

自动化测试技术

文献标识码:A

一种新的 GPS/SINS 组合测姿模型

贺 浩,郑玉航,杨东方,张金生,闫循良

(第二炮兵工程大学,西安 710025)

摘要:针对多天线 GPS/SINS 组合测姿中存在的精度不够和难以实现的问题,研究了一种新的 GPS/SINS 组合测姿模型;利用 GPS 载波相位高精度相对定位技术,在传统"速度+位置"松组合的基础上,加入了基于基线向量误差的姿态量测方程,提出了一种精度较高并且较易实现的 GPS/SINS 组合测姿模型;基于某飞行仿真航迹对模型的测姿性能进行了数值仿真,并与传统测姿模型进行了对比分析;仿真结果表明,与传统模型相比,新的测姿模型可以显著提高导航系统测姿精度和滤波收敛速度,偏航角、俯仰角测量精度可达 0.02°,滚动角测量精度可达 0.1°,可为飞行器的高精度组合测姿提供一定的参考价值。

关键词:测姿;载波相位;卡尔曼滤波;基线向量

A Novel Model for Attitude Determination by Using GPS/SINS Integrated System

He Hao, Zheng Yuhang, Yang Dongfang, Zhang Jinsheng, Yan Xunliang

(Second Artillery Engineering University, Xi'an 710025, China)

Abstract: A novel attitude determination model is proposed to improve the precision and realization of multi—antenna GPS/SINS integrated system. Attitude measurement equation based on baseline vector is established by using loosely coupled GPS/SINS system and GPS carrier phase high—precision relative positioning. According which a more accurate and accessible model of GPS/SINS attitude determination is proposed. The ability of attitude determination for the model is tested and compared with the traditional model by flying a trace in numerical simulation. The results show that the proposed model of attitude determination improves the precision and convergence obviously. The precision of yaw angle and pitch angle can be 0.02° and the roll angle can be 0.1° . This model can offer reference value for aerocrafts' high—accuracy integrated attitude determination.

Keywords: attitude determination; carrier phase; Kalman filtering; baseline vector

0 引言

对于长航时无人飞行器,尤其在高动态等特殊应用条件 下,导航系统对姿态测量有着较高要求。惯导系统因其全自 主、测量信息全面和短时精度高的特点而得到广泛应用,但其 误差会随时间积累。采用组合测姿是解决这一问题的较好途 径。卫星/惯导组合导航技术成熟、应用广泛,而随着 GPS 姿 态测量技术的研究和应用,GPS 与惯导组合测姿也成为姿态 测量的一种常用方法,特别是进行全姿态组合和速度组合,可 以发挥各自优势^[1]。

目前,GPS 测姿的方法主要有单天线,双天线和多天线 测姿的方法。基于单天线的测姿方法,忽略了载体冲角、攻角 和侧滑角误差带来的影响,应用场合受限,而且其基本原理和 方法与本文不同,故不作讨论。双天线测姿与多天线测姿的基 本原理是一致的,区别在于双天线只能测量载体3个姿态角中 的两个。测量全面的姿态信息,需要3个或者3个以上的GPS 天线布局。关于双天线 GPS/INS 的组合定位定姿技术,孙红 星^[2]于 2004 年做了充分的论述,但没未对多天线 GPS 与 SINS 系统组合测姿做进一步的研究。马丽锋^[3]提出一种多天 线 GPS/SINS 的载体测姿系统,设计了组合测姿卡尔曼滤波

收稿日期:2015-02-02; 修回日期:2015-04-07。

基金项目:国家自然科学基金(61403398);陕西省自然科学基金(2014JM2-6109)。

作者简介:贺 浩(1991-),男,山西省忻州市人,硕士研究生,主要 从事导航、信息融合方向的研究。 器。该系统采用了站际、星际双差方法测量基线向量,可降低 电离层、对流层延时误差。但是,该模型直接使用载波相位信 息实现高精度定位,在技术实现上具有一定难度。

本文以传统松组合方法实现定位和测速,以载波相位干涉 方法实现多天线间相对定位,提出一种新的较易实现的多天线 GPS/SINS组合测姿模型。

1 GPS/SINS 组合测姿模型

以单基线所构建的模型与多天线类似,本文以多天线为例 进行研究。系统的姿态与速度和位置参数耦合,在较高动态情 况下更是如此,因此建立全组合的滤波模型有助于提高测姿精 度。以惯导系统参数误差作为组合导航系统的状态量,以卫星 测量参数与惯导参数的误差作为观测量,建立 GPS/SINS 的全 组合测姿模型。

1.1 惯导系统误差方程

SINS 不存在传统意义上的物理平台,而以数学平台代替, 通过姿态转换矩阵的迭代计算,将固连在载体上的惯性测量元 件敏感到的参数解算到导航坐标系下。其误差方程可描述 如下:

数学平台误差角方程: $\dot{\varphi} = \delta \omega_{ie}^{n} + \delta \omega_{en}^{n} - (\omega_{ie}^{n} + \omega_{en}^{n}) \times \varphi + \epsilon^{p}$ (1)

速度误差方程:

$$\delta v = f^n \times \varphi - (2\delta \omega_{ie}^n + \delta \omega_{en}^n) \times v -$$

 $(2\omega_{ie}^{n}+\omega_{en}^{n})\times \delta v+\nabla^{p}$ ⁽²⁾

位置误差方程:

$$\delta \dot{L} = \frac{\delta v_n}{R_m + h} \tag{3}$$

$$\dot{\mathfrak{A}} = \frac{\delta v_e}{R_m + h} \mathrm{sec} L + \frac{\delta v_e}{R_m + h} \mathrm{sec} L \mathrm{tan} L \delta L \tag{4}$$
$$\dot{\mathfrak{A}}_h = \delta v_m \tag{5}$$

1.2 组合导航系统状态空间方程

卫星/惯导组合导航系统是基于惯导系统的动力学模型建 立系统的状态空间方程,并采用扩展卡尔曼滤波器(EKF)设 计实现的。考虑到组合测姿模型中姿态参数与位置、速度参数 相关,因此建立全组合的导航系统模型。组合导航系统的状态 方程可描述为

$$\dot{\boldsymbol{X}}(t) = \boldsymbol{F}(t)\boldsymbol{X}(t) + \boldsymbol{G}(t)\boldsymbol{W}(t)$$
(6)

式中,G(t)为噪声分配矩阵,W(t)为陀螺仪和加速度计的系统噪声矩阵^[4]。

选用数学平台误差角、测速误差、定位误差、陀螺漂移和 加速度计漂移误差作为惯导系统的状态向量:

其中: φ_E , φ_N , φ_U 为捷联惯导系统数学平台的误差角; δV_E , δV_N , δV_U 为惯导系统的测速误差; δL , $\delta \lambda$, δh 为惯导系统分别在 纬度、经度和高度方向上的定位误差; ε_{hx} , ε_{hy} , ε_{hz} , ε_{rx} , ε_{ry} , ε_{rz} 为 陀螺的常值漂移误差和相关漂移误差; \bigtriangledown_x , \bigtriangledown_y , \bigtriangledown_z 为加速度 计在载体坐标系中的等效漂移。

系统矩阵 F(t) 为

$$\mathbf{F}(t) = \begin{bmatrix} \mathbf{F}_N & \mathbf{F}_S \\ 0 & \mathbf{F}_M \end{bmatrix}_{18 \times 18}$$
(8)

式中, F_N 为对应 SINS 9个误差参数的系统动态矩阵;

$$\mathbf{F}_{S} = \begin{bmatrix} C_{b}^{n} & C_{b}^{n} & 0_{3\times3} \\ 0_{6\times6} & C_{b}^{n} \\ 0_{6\times6} & 0_{3\times3} \end{bmatrix}_{9\times9}$$
(9)

$$\mathbf{F}_{M} = diag \left[000 - \frac{1}{T_{gx}} - \frac{1}{T_{gy}} - \frac{1}{T_{gz}} - \frac{1}{T_{ax}} - \frac{1}{T_{ay}} - \frac{1}{T_{az}} \right]$$
(10)

1.3 组合导航系统量测方程

关于系统位置和速度量测方程的推导,可参考文献[4], 本文主要介绍姿态的量测方程。

多天线 GPS 测姿是组合测姿系统姿态量测信息来源,一 般通过载波相位高精度定位实现测量 GPS 基线向量,并解算 载体姿态,如需要获取载体的全部姿态信息,则至少需要3根 天线。图1给出了一种多天线 GPS 测姿的天线布局方案。该 方案于载体中心安装天线 A₁,纵轴线上安装天线 A₂,横轴 安装天线 A₃。

1.3.1 一般姿态量测方程

获取 GPS 基线后便可以进行姿态解算,其中直接法是较为简单、直观的方法^[5]。以图 1 天线布局为例,直接法对应的 姿态解算方程为

$$\begin{cases} \varphi = -\arctan\left(\frac{x_1}{y_1}\right) \\ \theta = \arctan\left(\frac{z_1}{\sqrt{x_1^2 + y_1^2}}\right) \\ \gamma = -\arctan\left(\frac{x_2 \sin\psi \sin\theta - y_2 \cos\psi \sin\theta + z_2 \cos\theta}{x_2 \cos\psi + y_2 \sin\psi}\right) \\ 其中: (x_1, y_1, z_1), (x_2, y_2, z_2) 分别为导航坐标系中的基$$

具 Ψ : (x_1, y_1, z_1) , (x_2, y_2, z_2) 分别为导机坐标系中的基 线矢量 a, b。

姿态量测方程为

$$\boldsymbol{Z}_{a} = \begin{bmatrix} \varphi_{e} \\ \varphi_{n} \\ \varphi_{u} \end{bmatrix} + \boldsymbol{v}_{\varphi} \approx \begin{bmatrix} \gamma_{I} - \gamma_{G} \\ \theta_{I} - \theta_{G} \\ \psi_{I} - \psi_{G} \end{bmatrix} = \begin{bmatrix} \delta \gamma \\ \delta \theta \\ \delta \psi \end{bmatrix}$$
(11)

对应的观测方程为 $H_{\alpha} = I_{3\times 3}$ 。

直接法的 GPS 测姿精度取决于天线相对定位的精度,而 以载波相位信息计算天线相对位置的处理过程会带来测姿误 差。同时,利用计算得到的俯仰角和偏航角进一步计算滚动 角,会带来误差累积。

1.3.2 改进的姿态量测方程

针对直接法上述缺点,此处略去 GPS 解算载体姿态的过程, 采用基线向量误差作为观测量对系统的姿态进行估计。由于其信 息等同于星际、站际双差,故可降低大气延时误差带来的影响。 以基线 *a* 为例,关于基线向量误差观测量的建模过程如下。

由载体坐标系转向导航坐标系的姿态转换矩阵为

$$\boldsymbol{C}_{b}^{n} = (\boldsymbol{I} + [\boldsymbol{\rho} \times]) \hat{\boldsymbol{C}}_{b}^{n}$$
(12)

其中: C_b 是真实的姿态转换矩阵, \hat{C}_b 是计算估计的姿态转换矩阵, $[\rho \times]$ 为姿态转换矩阵误差阵,

$$\begin{bmatrix} \boldsymbol{\rho} \times \end{bmatrix} = \begin{bmatrix} 0 & -\varphi_u & \varphi_n \\ \varphi_u & 0 & -\varphi_e \\ -\varphi_n & \varphi_e & 0 \end{bmatrix}$$
(13)

用接收机的站际单差表示基线向量和其估计值: $B_{12}^{n} = C_{b}^{n}B_{12}^{n} = \hat{C}_{b}^{n}\hat{B}_{12}^{n}$,则误差为

$$\Delta \boldsymbol{B}_{12}^{n} = \boldsymbol{B}_{12}^{n} - \hat{\boldsymbol{B}}_{12}^{n}$$
(14)

其中:**B**ⁿ₁₂、**B**^h₁₂ 分别为导航坐标系和载体坐标系下的基线向 量,**B**ⁿ₁₂、**B**^h₁₂ 为其估计值。

基线向量误差和小角度旋转误差之间的关系可描述为

 $\Delta \boldsymbol{B}_{12}^{n} = [\boldsymbol{\rho} \times] \hat{\boldsymbol{B}}_{12}^{n} + n_{12} \tag{15}$

将基线向量误差 $\Delta B_{12}^{"}$ 从地理系转换到地球坐标系后,有 $\Delta B_{12} = C_n([-\hat{B}_{12}^{"} \times]\varphi + n'_{12}) =$

$$\boldsymbol{C}_{n} \begin{bmatrix} 0 & \hat{\boldsymbol{z}}_{12}^{n} & -\hat{\boldsymbol{y}}_{12}^{n} \\ -\hat{\boldsymbol{z}}_{12}^{n} & 0 & \hat{\boldsymbol{x}}_{12}^{n} \\ \hat{\boldsymbol{y}}_{12}^{n} & -\hat{\boldsymbol{x}}_{12}^{n} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\varphi}_{e} \\ \boldsymbol{\varphi}_{n} \\ \boldsymbol{\varphi}_{u} \end{bmatrix} + \boldsymbol{n}_{12}$$
(16)

此处, ΔB_{12} 是基线向量在地球坐标系的误差, C_n 是地理坐标系 到 地 球 坐 标 系 的 旋 转 矩 阵, $\hat{B}_{12}^n = \hat{C}_n^n B_{12}^n = \hat{r}_n^n B_{12}^n = \hat{$

将利用载波相位测得的基线向量,投影到不同卫星与载体连 线的矢量之上,可得到站际、星际双差测量值,将此测量值与惯 导估计的双差值作差,建立关于基线向量误差的观测方程:

$$\delta \boldsymbol{B}_{12} = (\nabla \Delta \varphi_{12} + N_{12}) \lambda - \boldsymbol{B}_{12} =$$

$$\boldsymbol{S}^{ij} \boldsymbol{C}_{n}^{\epsilon} \begin{bmatrix} 0 & \hat{\boldsymbol{z}}_{12}^{n} & -\boldsymbol{y}_{12}^{n} \\ -\hat{\boldsymbol{z}}_{12}^{n} & 0 & \hat{\boldsymbol{x}}_{12}^{n} \\ \hat{\boldsymbol{y}}_{12}^{n} & -\hat{\boldsymbol{x}}_{12}^{n} & 0 \end{bmatrix} \begin{bmatrix} \varphi_{e} \\ \varphi_{n} \\ \varphi_{u} \end{bmatrix} + \boldsymbol{n}_{12} \qquad (17)$$

其中: $[\varphi_e \quad \varphi_n \quad \varphi_n]^T$ 是姿态误差角, $\hat{B}_{12} = S^{ij} C_n^e C_n^b B_{12}^b$ 为地 球坐标系下 GPS 基线向量的估计值, $\bigtriangledown \Delta \varphi_{12}$ 为天线 1 和天线 2 的载波相位双差值, N_{12} 为双差模糊度, λ 为接收到载波的波

长, S^{i} 为i, j 卫星与天线之间单位化向量的双差值, n_{12} 为观测 噪声向量。

基线向量误差对应的观测矩阵为

$$\boldsymbol{H}_{a} = \boldsymbol{C}_{n} \begin{bmatrix} 0 & z_{12}^{n} & -y_{12}^{n} \\ -\hat{z}_{12}^{n} & 0 & \hat{x}_{12}^{n} \\ \hat{y}_{12}^{n} & -\hat{x}_{12}^{n} & 0 \end{bmatrix}$$
(18)

仿真试验及分析 2

姿性能进行比较。仿真航迹如图 2 所示。

取纵向基线长度为10m,法向基线长度为5m。初始姿态

角为航向角 $\varphi = 24^{\circ}58'$,俯仰角 $\theta = 7^{\circ}47'32''$,滚动角 $\gamma = 0^{\circ}$ 。 陀螺仪漂移均方值为5°/h,相关时间为300 s。

观测噪声均方差为:基线误差 0.01 m, 三轴向速度误差均 为 0.01 m/s, 地球坐标系下, x 向, y 向, z 向位置误差均为 10m。采用扩展卡尔曼滤波(EKF)方法对所建立模型进行仿真 计算,得到两种模型在同等条件下的测姿精度,如图3所示。

通过图 3 可以看出,传统的组合测姿方法滤波精度较低、 收敛速度较慢。同时,由于偏航角和俯仰角的误差对滚动角计 算影响较大,所以滚动角测量精度更差。而本文提出的模型显 著提高了测姿精度,尤其是滚动角的测量精度,同时,滤波收 敛谏度也快干传统方法。

仿真结果显示,一般的测姿模型精度为偏航角 0.25°,俯 仰角 0.4°, 滚动角 0.5°, 本文的测姿模型偏航角、俯仰角精度 为 0.02°, 滚动角精度为 0.1°。结果数据表明,本文提出的组 合测姿模型能够实现较高精度的姿态测量。

3 结论

本文针对传统 GPS/SINS 组合测姿研究中存在的精度较 差、实用性不强的问题,基于易于实现的 GPS/SINS 松组合模 型和 GPS 载波相位相对定位技术,提出了一种使用基线向量 误差建立姿态测量方程的组合测姿模型。通过星际、站际双差 计算基线向量误差,可以降低 GPS 的平流层、对流层延时误 差带来的影响。略去了通过基线向量解算载体姿态的过程,减 小了过程中计算误差带来的影响。仿真试验结果表明,本文提 出的组合测姿模型可以有效提高组合测姿的精度,并改善滤波 收敛速度。

参考文献:

- [1] 许江宁,朱 涛,卞鸿巍. GPS 姿态测量技术综述 [J]. 海军工程 大学学报. 2003, 6 (3): 17-22.
- [2] 孙红星. 差分 GPS/INS 组合定位定姿及其在 MMS 中的应用 [D]. 武汉大学. 2004.
- [3] 马丽锋. 基于多天线 GPS/SINS 载体姿态测量系统研究 [D]. 西 安:西北工业大学,2007.
- [4] 王惠南, GPS 导航原理与应用 [M], 北京, 科学出版社, 2006.
- [5] 郭 婧. 基于 GPS 的姿态测量技术研究 [D]. 哈尔滨:哈尔滨工 程大学, 2009.
- [6] 翟海廷,丛 丽,秦红磊,等.基于单天线的 MEMS-INS/GPS 组合定姿方法 [J]. 计算机工程与设计, 2012 (10): 3999-4003.
- [7] 杨 钊,王建华,吴玉平. 卡尔曼滤波在无人水面艇双天线 GPS 定位测向系统中的应用「J]. 计算机测量与控制, 2014, 22 (9): 2922 - 2925.
- [8] 王鹏飞,于晓洲,周 军,等. 基于 SOPC 的双 GPS/MSINS 组合导航 系统设计 [J]. 计算机测量与控制, 2013, 21 (8): 2221-2223.
- [9] Sang Heon Oh, Dong-Hwan Hwang, Chansik Park, et al. Attitude Derermination GPS/INS Integration System Design Using Triple Difference Technique [J]. Journal of Electrical Engineering & Technology, 2007 (4): 615-625.
- [10] Klaus-Peter Schwarz. Aircraft position and attitude determination by GPS and INS [J]. International Archives of Photogrammetry and Remote Sensing. 1996. 67-73.
- [11] 王惠南, 应金栋. GPS 载体姿态测量中的 LAMBDA 方法研究 [J]. 航空学报. 2001, 6 (1): 61-63.
- [12] 刘志俭, 胡小平, 贺汉根. 惯导辅助的基于 GPS 的航向姿态参考 系统的设计与实现 [J]. 中国惯性技术学报. 2003, 4: 14-18.

洗取四颗可见星,基于某飞行器仿真航迹对两种模型的测