基于能量聚焦自适应扫描的冲击波波阵面高精度提取方法
DOI:
CSTR:
作者:
作者单位:

中北大学信息与通信工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然基金面上科学基金(62271453);中央支持地方项目(YDZJSX2024D031);山西省专利转化专项计划资助项目(202405004)


Shock Wave Front Based on Energy-focused Adaptive Scanning High-precision Extraction Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对冲击波波阵面特征参数提取中存在精度低、抗噪性差等问题,提出一种基于能量聚焦自适应扫描的冲击波波阵面高精度提取方法。该方法创新性地结合最近邻帧减法与互相关分析,协同抑制背景噪声及火球云团噪声,实现冲击波波阵面轮廓信息的初步提取;在此基础上,依据冲击波能量聚集特性,通过构建搜索框并对搜索框内相同半径像素亮度进行积分,结合逆向差分精准定位梯度极值,从而精确捕捉冲击波波阵面位置。结果表明,该方法可实现冲击波特征点的自动检测,有效克服噪声与不对称性干扰;与常规算法相比,提取结果在空间均匀性上提升28%,距离标准差降低94%,具有较高的可靠性和工程适用性。

    Abstract:

    To address issues such as low accuracy and poor noise resistance in shock wave front parameter extraction, this paper proposes a high-precision extraction method based on energy-focused adaptive scanning. This method innovatively combines nearest-neighbor frame subtraction with cross-correlation analysis to synergistically suppress background noise and fireball cloud noise, enabling preliminary extraction of shock wavefront contour information. Building upon this foundation, it leverages the energy concentration characteristics of shock waves by constructing search boxes and integrating pixel brightness within identical radii. Combined with inverse differential techniques for precise gradient peak localization, this approach accurately captures shock wavefront positions. Results demonstrate that this method enables automatic detection of shock wave feature points, effectively overcoming noise and asymmetry interference. Compared to conventional algorithms, the extracted results show a 28% improvement in spatial uniformity and a 94% reduction in distance standard deviation, exhibiting high reliability and engineering applicability.

    参考文献
    相似文献
    引证文献
引用本文

倪明月,李剑,展勇忠,邢晋超,胡福弟.基于能量聚焦自适应扫描的冲击波波阵面高精度提取方法计算机测量与控制[J].,2026,34(1):227-234.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-28
  • 最后修改日期:2025-10-23
  • 录用日期:2025-10-24
  • 在线发布日期: 2026-01-21
  • 出版日期:
文章二维码