基于机器学习和雷达数据的强对流单体识别追踪方法
DOI:
CSTR:
作者:
作者单位:

1.天津市气象信息中心;2.天津市海洋气象实验室

作者简介:

通讯作者:

中图分类号:

G06T7

基金项目:

中国气象局雷电重点开放实验室开放课题(2024KELL-B015);天津市海洋气象重点实验室2024年度开放基金项目(2024TKLOM05)


Severe Convective Cell Identification and Tracking Method Based on Machine learning and Radar Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对流单体是对流系统的基本组成单元,尤其强对流单体常造成灾害性天气,严重威胁人民生命和财产安全;面向提升强对流天气监测预警能力需求,提出了基于DBSCAN和雷达组网组合反射率、回波顶高产品的强对流单体自动识别追踪方法,通过图像处理技术改进雷达源数据质量,提升了强对流单体识别准确率,综合运用相邻三时次雷达数据修正追踪结果,确保强对流单体追踪路径准确性;基于2023-2024年环渤海地区17次强对流天气过程数据,构建训练集和测试集,研发了环渤海地区强对流单体自动识别追踪模型;检验结果表明,方法能有效识别单个或多个形态各异的强对流单体,并准确追踪其合并分裂,为强对流单体自动识别追踪提供了新思路。

    Abstract:

    Convective cells are the basic building blocks of convective systems, especially severe convective cells, often cause disastrous weather and pose a serious threat to people"s lives and property safety; Aimed at enhancing the capability of monitoring and early warning for severe convective weather, an automatic identification and tracking method for severe convective cells based on Density-Based Spatial Clustering of Applications with Noise(DBSCAN) and radar network combined reflectivity and echo top height products is proposed;By improving the quality of radar source data through image processing technology, the accuracy of severe convective cell identification is enhanced;The tracking results are corrected by comprehensively utilizing radar data from three adjacent time intervals to ensure the accuracy of the tracking path of severe convective cells; Based on the data from 17 severe convective weather processes in the Bohai Rim region from 2023 to 2024, a training set and a test set are constructed, and an automatic identification and tracking model for severe convective cells in the Bohai Rim region is developed; The test results show that the method can effectively identify single or multiple severe convective cells with different shapes and accurately track their merging and splitting, providing a new idea for automatic identification and tracking of severe convective cells.

    参考文献
    相似文献
    引证文献
引用本文

赵玉娟,郑栋,孙晓磊,李宗飞,姜罕盛,武国良,崇晓峰,赵婥.基于机器学习和雷达数据的强对流单体识别追踪方法计算机测量与控制[J].,2026,34(1):205-213.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-24
  • 最后修改日期:2025-08-20
  • 录用日期:2025-08-22
  • 在线发布日期: 2026-01-21
  • 出版日期:
文章二维码