基于时空门控VAE的ADS-B数据异常检测方法
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第十五研究所

作者简介:

通讯作者:

中图分类号:

TP 391.4

基金项目:


Anomaly Detection for ADS-B Data Using Spatio-Temporal Gated VAE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    广播式自动相关监视是新一代空中管理系统重要的组成部分,但由于ADS-B报文以明文形式广播且缺乏数据加密和认证,导致其极易受到欺骗干扰。针对以上问题,提出一种基于时空门控变分自编码器的ADS-B数据异常检测算法。该算法编码器通过采用双向LSTM建模局部时序特征,结合3层8头Transformer提取全局时空特征,并利用门控网络动态融合时空特征;引入变分推理生成潜在空间分布,约束模型对正常飞行模式的概率建模;解码器采用单层LSTM与2层Transformer的级联结构通过全连接层同步重建多维飞行参数。经实验测试,在不同攻击场景下,该模型可有效检测出ADS-B数据的各类异常,性能优于相关基线算法,为提升空中管理系统安全性提供了可行性方案。

    Abstract:

    Automatic Dependent Surveillance-Broadcast is a critical component of next-generation air traffic management systems. However, its vulnerability to spoofing interference arises from the plaintext broadcasting of ADS-B messages without data encryption and authentication. Aimed at this problem, a spatio-temporal gated variational autoencoder-based anomaly detection algorithm for ADS-B data is proposed. The encoder employs bidirectional long short-term memory to model local temporal features, combines a three-layer eight-head Transformer to extract global spatio-temporal features, and utilizes a gating network to dynamically fuse these features. Variational inference is introduced to generate the latent space distribution, constraining the model's probabilistic modeling of normal flight patterns. The decoder incorporates a cascaded structure of a single-layer LSTM and a two-layer Transformer to simultaneously reconstruct multidimensional flight parameters through fully connected layers. Experimental results demonstrate that the proposed model effectively detects various anomalies in ADS-B data across different attack scenarios, with superior performance over relevant baseline algorithms. This approach provides a feasible solution for enhancing the security of air traffic management systems.

    参考文献
    相似文献
    引证文献
引用本文

蒋东旭,刘蕾.基于时空门控VAE的ADS-B数据异常检测方法计算机测量与控制[J].,2026,34(1):51-58.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-24
  • 最后修改日期:2025-07-31
  • 录用日期:2025-07-31
  • 在线发布日期: 2026-01-21
  • 出版日期:
文章二维码