导弹发射车起竖装置弧齿锥齿轮动频率控制方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    导弹发射车起竖过程中,导弹可能因携带不同任务载荷导致重量增加,或者起竖角度出现意外偏差,此时齿轮所承受的负载就会偏离优化设计时的预期。齿轮的啮合力和传动特性会随之改变,单一控制方式难以全面应对这些复杂的激励因素,导致起竖装置动频率不稳定,削弱导弹发射车的快速反应能力。因此,提出导弹发射车起竖装置弧齿锥齿轮动频率控制方法。将压电式加速度传感器安装在齿轮箱体上,捕捉弧齿锥齿轮在运转过程中产生的微小振动信号。对微小振动信号进行盲源分离和快速傅里叶变换,通过频谱分析确定弧齿锥齿轮动频率。由此,通过海鸥算法优化压力角、螺旋角、轴向与径向间隙四个参数的优化。从静态控制层面在一定程度上补偿制造和安装误差导致的动频率波动。而在动态控制层面,利用压电式加速度传感器实时监测齿轮振动信号,通过盲源分离和快速傅里叶变换确定动频率,及时捕捉到因导弹重量和起竖角度变化引起的动频率波动。同时以监测到的动频率实时值与预期设定值之间的差值作为分数阶内模PID控制器的输入,通过自适应调整确保齿轮系统在全工况下稳定运行,实时响应复杂激励因素带来的变化,实现弧齿锥齿轮动频率动态控制。实验结果表明:静态控制后弧齿锥齿轮的振动加速度RMS值可以降低至16以下,且面对转速突变、负载突变两种工况,分数阶内模PID控制方法的超调量均在1.0%以下,说明所研究方法通过动态、静态结合的控制方法可以使导弹发射车起竖装置具有更好的动态响应性能和适应性。

    Abstract:

    During the process of erecting a missile launch vehicle, the weight of the missile may increase due to carrying different mission loads, or there may be unexpected deviations in the erecting angle. At this time, the load borne by the gears will deviate from the expected optimized design. The meshing force and transmission characteristics of gears will change accordingly, and a single control method is difficult to comprehensively deal with these complex excitation factors, resulting in unstable dynamic frequency of the erecting device and weakening the rapid response capability of missile launch vehicles. Therefore, a method for controlling the dynamic frequency of the spiral bevel gear of the missile launch vehicle"s vertical device is proposed. Install the piezoelectric accelerometer on the gearbox to capture the small vibration signals generated by the bevel gear during operation. Blind source separation and fast Fourier transform are performed on small vibration signals to determine the dynamic frequency of bevel gears through spectral analysis. Thus, the seagull algorithm is used to optimize the four parameters of pressure angle, helix angle, axial and radial clearance. Compensate for dynamic frequency fluctuations caused by manufacturing and installation errors to a certain extent from a static control perspective. At the dynamic control level, piezoelectric acceleration sensors are used to monitor gear vibration signals in real time, and the dynamic frequency is determined through blind source separation and fast Fourier transform, capturing the dynamic frequency fluctuations caused by missile weight and vertical angle changes in a timely manner. At the same time, the difference between the real-time value of the monitored dynamic frequency and the expected set value is used as the input of the fractional order internal model PID controller. Through adaptive adjustment, the gear system ensures stable operation under all operating conditions, responds in real-time to changes caused by complex excitation factors, and achieves dynamic control of the dynamic frequency of bevel gears. The experimental results show that the RMS value of the vibration acceleration of the spiral bevel gear can be reduced to below 16 after static control, and the overshoot of the fractional order internal model PID control method is below 1.0% in the face of two working conditions: sudden changes in speed and load. This indicates that the studied method can improve the dynamic response performance and adaptability of the missile launcher"s vertical device through a combination of dynamic and static control methods.Keywords: Missile launch vehicle; Vertical device; Spiral bevel gear; Dynamic frequency; Seagull algorithm; Fractional order internal model PID controller

    参考文献
    相似文献
    引证文献
引用本文

郭迎辉.导弹发射车起竖装置弧齿锥齿轮动频率控制方法计算机测量与控制[J].,2025,33(11):183-191.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-13
  • 最后修改日期:2025-06-20
  • 录用日期:2025-06-20
  • 在线发布日期: 2025-11-24
  • 出版日期:
文章二维码