电磁波干扰下无人机通信链路异常容错控制方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机所处的电磁环境复杂多变,存在多种类型的电磁波干扰源,这些干扰信号会与无人机通信链路信号相互叠加,导致信号频谱变得复杂,难以准确提取出能够有效表征通信链路状态的频谱特征。因此,提出电磁波干扰下无人机通信链路异常容错控制方法。从无人机通信链路信号中提取频谱特征,利用SVM检测电磁波干扰导致的异常链路,切断异常链路并通过鲸鱼算法重构无人机通信链路。采用神经网络改进PID控制器同步调整无人机通信链路的传输与载波频率,恢复无人机正常通信,以确保通信连续性。实验结果表明,所研究方法的传输速率相对更高,均保持在950bps以上、误码率曲线均保持在0.15左右,这表明所研究容错控制方法在电磁干扰环境下的表现更优,能够确保无人机在复杂电磁环境中保持更快速、可靠的通信。

    Abstract:

    The electromagnetic environment in which drones operate is complex and varied, with various types of electromagnetic wave interference sources. These interference signals can overlap with the drone communication link signals, making the signal spectrum complex and difficult to accurately extract spectral features that can effectively characterize the communication link status. Therefore, a fault-tolerant control method for abnormal communication links of unmanned aerial vehicles under electromagnetic wave interference is proposed. Extract spectral features from drone communication link signals, use SVM to detect abnormal links caused by electromagnetic wave interference, cut off abnormal links, and reconstruct drone communication links through whale algorithm. Adopting neural network to improve PID controller and synchronously adjust the transmission and carrier frequency of the drone communication link, restoring normal communication of the drone to ensure communication continuity. The experimental results show that the transmission rate of the studied method is relatively higher, all maintaining above 950bps, and the error rate curve remains around 0.15. This indicates that the fault-tolerant control method studied performs better in electromagnetic interference environments, ensuring faster and more reliable communication for drones in complex electromagnetic environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-25
  • 最后修改日期:2025-04-03
  • 录用日期:2025-04-03
  • 在线发布日期:
  • 出版日期:
文章二维码