基于YOLOv5和点云3D投影的智能驾驶车辆前方多目标跟踪检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在多目标跟踪检测任务中,需要连续地跟踪多个目标,如车辆、行人等。为了实现这一目标,系统必须能够连续地获取并处理包含这些目标的图像帧。这些连续帧图像使算法能够在每一帧图像中实时更新目标的位置和状态,如何准确地将检测到的目标与前一帧或后一帧中的目标进行关联,形成稳定的轨迹,是一个复杂的问题。为此,提出基于YOLOv5和点云3D投影的智能驾驶车辆前方多目标跟踪检测方法。运用Retinex算法对车辆前方环境图像进行增强处理,去除图像中光线干扰,以YOLOv5网络结构为基础搭建智能检测模型,将增强后的图像输入模型中,通过特征提取和目标定位,识别出车辆前方多目标。结合点云3D投影技术,推断相邻帧图像在投影坐标系中位置变化的关联性,将连续多帧图像的多目标识别结果依次投影到三维激光点云环境中,即可完成对车辆前方所有目标运动轨迹的有效跟踪。实验结果表明:应用该方法完成智能驾驶车辆前方多目标跟踪检测,所得结果MOTA(跟踪准确度)值大于30,证明了其优越的跟踪检测性能。

    Abstract:

    In multi-target tracking and detection tasks, it is necessary to continuously track multiple targets, such as vehicles, pedestrians, etc. To achieve this goal, the system must be able to continuously acquire and process image frames containing these targets. These consecutive frame images enable the algorithm to update the position and state of the target in real-time in each frame of the image. How to accurately associate the detected target with the target in the previous or next frame to form a stable trajectory is a complex problem. Therefore, a multi object tracking and detection method for intelligent driving vehicles based on YOLOv5 and point cloud 3D projection is proposed. Using Retinex algorithm to enhance the image of the environment in front of the vehicle, remove light interference in the image, and build an intelligent detection model based on YOLOv5 network structure. The enhanced image is input into the model, and multiple targets in front of the vehicle are identified through feature extraction and target localization. By combining point cloud 3D projection technology, the correlation between the position changes of adjacent frame images in the projection coordinate system can be inferred. By sequentially projecting the multi-target recognition results of multiple consecutive frame images into the 3D laser point cloud environment, effective tracking of the motion trajectories of all targets in front of the vehicle can be achieved. The experimental results show that the application of this method for intelligent driving vehicle front multi-target tracking and detection yields a MOTA (Tracking Accuracy) value greater than 30, demonstrating its superior tracking and detection performance.

    参考文献
    相似文献
    引证文献
引用本文

刘大勇,张清睿,孟泽阳.基于YOLOv5和点云3D投影的智能驾驶车辆前方多目标跟踪检测计算机测量与控制[J].,2025,33(6):102-109.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-21
  • 最后修改日期:2025-03-25
  • 录用日期:2025-03-26
  • 在线发布日期: 2025-06-18
  • 出版日期:
文章二维码