基于LabVIEW的医疗设备故障智能诊断系统设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of Intelligent Diagnosis System for Medical Equipment Faults Based on LabVIEW
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有故障识别方法在识别耗时和准确率方面的不足,特别是在医疗设备领域,研究了一种医疗设备故障智能诊断系统。该系统采用LabVIEW的关键技术和方法,结合MobileNet-v2和单发多框检测器(SSD),实现高效、准确的故障检测。数据采集模块利用DAQmx API和VISA实现与各类硬件的顺畅通信,确保数据的高精度采集。数据存储与管理模块依托Database Connectivity Toolkit和File I/O Functions实现数据的长期保存和管理。故障检测模块通过优化MobileNet-v2的倒残差结构、线性瓶颈和深度可分离卷积设计,并结合SSD分类器,构建了SSD-MobileNet-v2模型,实现对不同尺度医疗设备的故障诊断。通过实验测试,该系统在120个医疗设备样本上的故障识别准确率超过0.97,最高达到0.9843,平均故障响应时间为160.67ms。模型的平均绝对误差集中在0.02到0.04之间,最高不超过0.05。混淆矩阵分析显示,系统在老化故障和损耗性故障的识别上,正确分类样本数分别为964和984,总体识别准确率较高。研究结果表明,该系统在医疗设备故障检测中具有高准确率、快速响应和低资源占用的特点,验证了其在实际应用中的有效性和可靠性。

    Abstract:

    Aiming at the shortcomings of existing fault recognition methods in terms of recognition time and accuracy, especially in the field of medical equipment, a medical equipment fault intelligent diagnosis system has been studied. The system adopts key technologies and methods of LabVIEW, combined with MobileNet-v2 and Single Shot Multi Frame Detector (SSD), to achieve efficient and accurate fault detection. The data acquisition module utilizes DAQmx API and VISA to achieve smooth communication with various hardware, ensuring high-precision data acquisition. The data storage and management module relies on the Database Connectivity Toolkit and File I/O Functions to achieve long-term storage and management of data. The fault detection module optimized the inverse residual structure, linear bottleneck, and depthwise separable convolution design of MobileNet-v2, and combined it with an SSD classifier to construct an SSD-MobileNet-v2 model for fault diagnosis of medical devices at different scales. Through experimental testing, the system achieved a fault recognition accuracy of over 0.97 on 120 medical equipment samples, with a maximum of 0.9843 and an average fault response time of 160.67ms. The average absolute error of the model is concentrated between 0.02 and 0.04, with the highest not exceeding 0.05. The confusion matrix analysis shows that the system has a high overall accuracy in identifying aging faults and loss faults, with 964 and 984 correctly classified samples, respectively. The research results indicate that the system has the characteristics of high accuracy, fast response, and low resource occupation in medical equipment fault detection, which verifies its effectiveness and reliability in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

赵小玉,王琰.基于LabVIEW的医疗设备故障智能诊断系统设计计算机测量与控制[J].,2025,33(5):106-116.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-07
  • 最后修改日期:2025-04-25
  • 录用日期:2025-03-06
  • 在线发布日期: 2025-05-20
  • 出版日期:
文章二维码