基于小波分析与帧间交错图像融合算法的电磁泄漏信息还原方法
DOI:
CSTR:
作者:
作者单位:

智能探测技术与装备山西省重点实验室

作者简介:

通讯作者:

中图分类号:

TP309.1

基金项目:

中央引导地方科技发展资金(YDZJSX20231A025,YDZISX2024D032);山西重点研发计划项目(202202010101007);山西省科技成果转化引导专项(202204021301044,202304021301028)。


A method for EM information leakage reconstruction based on wavelet analysis and interframe interleaved image fusion algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对显示器电磁泄漏信号还原出的图像存在模糊的问题,提出了一种基于小波分析与帧间交错图像融合算法融合的电磁泄漏信息还原方法,基于多帧平均去噪法的原理,利用显示器显示图像信息时依赖于不同视频帧周期性重复的特性,通过将连续帧进行像素点的交错叠加来实现图像增强,进而有效减弱环境噪声的影响,同时融合一维小波变换技术,进一步提高了图像重建的质量。实验结果表明,相较于直接进行图像重构,利用小波分析与帧间交错图像融合算法在图像信噪比、对比度、锐度上分别提高了79.7%、15.9%、47.8%,该算法在电磁泄漏信号还原与信号处理领域具有显著的应用价值。

    Abstract:

    Aiming at the fuzzy problem of the image restored by the electromagnetic leakage signal of the display, this paper proposes a restoration method of electromagnetic leakage information based on the fusion of wavelet analysis and interframe interleaved image fusion algorithm. Based on the principle of multi-frame average denoising method, it makes use of the characteristics that the display depends on the periodic repetition of different video frames when displaying image information. Image enhancement is achieved by interleaving and superimposing pixel points of consecutive frames, which effectively reduces the influence of environmental noise. At the same time, the fusion of one-dimensional wavelet transform technology further improves the quality of image reconstruction. The experimental results show that, compared with the direct image reconstruction, the image signal-to-noise ratio, contrast ratio and acuteness of the fusion algorithm using wavelet analysis and frequency domain hierarchical image reconstruction are improved by 79.7%, 15.9% and 47.8%, respectively. The algorithm has significant application value in the field of electromagnetic leakage signal recovery and signal processing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-15
  • 最后修改日期:2025-02-08
  • 录用日期:2025-02-10
  • 在线发布日期:
  • 出版日期:
文章二维码