多无人机协同路径规划计算资源分配方法研究
DOI:
CSTR:
作者:
作者单位:

1.西北工业大学 2.自动化学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Resource Allocation method for Cooperative Path Planning of UAV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多目标多机协同路径规划问题,在MOEA/D算法求解的基础上,采用深度强化学习方法对MOEA/D算法中计算资源分配方法进行了研究;对多机协同路径规划问题进行了研究,分析了相关约束以及优化目标,建立多机协同路径规划多目标优化模型;结合协同进化思想,对基于分解的多目标进化协同路径规划进行了研究;对基于强化学习的计算资源分配策略进行了研究,实现了深度强化学习在多目标优化计算资源分配问题上的应用;实现了多机协同路径规划仿真验证;经仿真测试,算法以更高性能完成多机协同路径规划任务,提高了多机协同路径规划中计算资源分配策略的能力。

    Abstract:

    Aiming at the multi-objective multi-UAVs cooperative path planning problem, based on the solution of MOEA/D algorithm, a deep reinforcement learning method is adopted to study the computational resource allocation method in MOEA/D algorithm; The multi-UAVs cooperative path planning problem is studied, the relevant constraints and optimization objectives are analyzed, and the multi-objective optimization model of multi-UAVs cooperative path planning is established; Combined with the idea of co-evolution, the multi-objective evolutionary cooperative path planning based on decomposition is investigated; the computational resource allocation strategy based on reinforcement learning is investigated, and the application of deep reinforcement learning in the multi-objective optimization of computational resource allocation is realized; The simulation verification of the multi-UAVs cooperative path planning is realized; The algorithm completes the multi-UAVs cooperative path planning task with a higher performance after the simulation test and the performance of the computational resource allocation strategy in the real problem is improved; The performance of the computational resource allocation strategy in the problem is improved.

    参考文献
    相似文献
    引证文献
引用本文

聂铭涛,刘颖珂,程海峰,刘小雄.多无人机协同路径规划计算资源分配方法研究计算机测量与控制[J].,2025,33(4):147-154.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-25
  • 最后修改日期:2025-02-21
  • 录用日期:2025-02-24
  • 在线发布日期: 2025-05-15
  • 出版日期:
文章二维码