水体异常高分辨率双向LSTM遥测系统设计
DOI:
CSTR:
作者:
作者单位:

陕西铁路工程职业技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    异常水体富营养化区域面积序列变化与水体掩膜图异常,导致难以输出水质参数的时序性特点,无法指导水体异常遥测过程,异常遥测结果的Kappa系数较低。因此,提出水体异常高分辨率双向LSTM遥测系统。硬件方面,针对遥感影像采集器、遥测仪、电源电路分别进行设计。软件方面,利用分段线性回归方程对水体高分辨率遥感光谱影像进行几何校正,解决影像形变问题。面向校正后的遥感影像,展开形态学重建运算和区域生长分割,提取图像中水体区域。运用双向长短时记忆网络,构造具有较强非线性映射能力和自适应学习能力的反演模型,将水体区域遥测图像中包含的光谱数据和历史水质参数导入模型中,充分利用水质参数的时序性特点,输出当前时刻水体水质参数,指导水体异常遥测。采用孤立森林算法识别异常水质参数,推导水体异常高分辨率遥测结果。测试结果表明:该系统给出的水体异常遥测结果Kappa系数超过了0.9,满足了水环境异常的高分辨率监测要求。

    Abstract:

    The changes in the area sequence of eutrophic areas in abnormal water bodies and the anomalies in the water body mask map make it difficult to output the temporal characteristics of water quality parameters, which cannot guide the telemetry process of abnormal water bodies and result in a lower Kappa coefficient for the telemetry results. Therefore, a high-resolution bidirectional LSTM telemetry system for water anomalies is proposed. In terms of hardware, separate designs are made for remote sensing image collectors, telemetry instruments, and power circuits. In terms of software, using piecewise linear regression equations to perform geometric correction on high-resolution remote sensing spectral images of water bodies, solving the problem of image deformation. Based on the corrected remote sensing images, perform morphological reconstruction operations and region growing segmentation to extract water body regions from the images. By using a bidirectional long short-term memory network, an inversion model with strong nonlinear mapping ability and adaptive learning ability is constructed. Spectral data and historical water quality parameters contained in remote sensing images of water bodies are imported into the model, fully utilizing the temporal characteristics of water quality parameters to output current water quality parameters and guide remote sensing of water body anomalies. Using the Isolation Forest algorithm to identify abnormal water quality parameters and derive high-resolution telemetry results for water anomalies. The test results show that the Kappa coefficient of the telemetry results for water anomalies provided by the system exceeds 0.9, meeting the high-resolution monitoring requirements for water environment anomalies.

    参考文献
    相似文献
    引证文献
引用本文

贺凯盈,成夏葳,岳军红.水体异常高分辨率双向LSTM遥测系统设计计算机测量与控制[J].,2025,33(5):89-96.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-28
  • 最后修改日期:2024-12-30
  • 录用日期:2025-01-02
  • 在线发布日期: 2025-05-20
  • 出版日期:
文章二维码