基于改进YOLOv8n的无人机目标检测研究
DOI:
作者:
作者单位:

陕西省西安市西安工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省教育厅科学研究计划项目资助


Research on UAV Target Detection Based on Improved YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无人机反制系统中,无人机目标具有显著的多尺度特征,特别是在小目标检测方面,往往检测精度较低。针对此问题提出一种基于动态样本注意力尺度序列的YOLOv8n优化改进算法YOLOv8-C2f-RFCBAMConv。分析了目标无人机在多尺度和小目标识别中的挑战,提出通过改进主干网络和融合C2f-RFCBAMConv模块来优化特征提取能力,提升多尺度特征处理能力。采用RFCBAM机制,并引入残差融合和上下文注意力机制,提升了特征表达能力并减少计算复杂度。此外,使用WIoU损失函数改善了小目标低质量数据对梯度的影响,加快了网络收敛速度。实验结果显示,改进模型在自采无人机数据集上的mAP@0.5和mAP@0.5:0.95分别提升了3.1%和1.7%,GFLOPs提升了0.7,表现出更高的检测精度和更低的计算复杂度。

    Abstract:

    In unmanned aerial vehicle (UAV) countermeasure systems, UAV targets exhibit prominent multi-scale characteristics, particularly in small target detection, where detection accuracy is often lower. To address this issue, a YOLOv8n-based optimization algorithm, YOLOv8-C2f-RFCBAMConv, is proposed, which incorporates a dynamic sample attention scale sequence. The challenges of multi-scale and small target recognition in UAVs are analyzed, and it is suggested that the feature extraction capability can be optimized by improving the backbone network and integrating the C2f-RFCBAMConv module. The RFCBAM mechanism, combined with residual fusion and context attention mechanisms, enhances feature representation while reducing computational complexity. Furthermore, the WIoU loss function is employed to mitigate the impact of low-quality data from small targets on gradient propagation, accelerating network convergence. Experimental results demonstrate that the proposed model achieves a 3.1% and 1.7% improvement in mAP@0.5 and mAP@0.5:0.95, respectively, on a self-collected UAV dataset, with a 0.7 GFLOP reduction, indicating higher detection accuracy and lower computational complexity.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-25
  • 最后修改日期:2024-12-05
  • 录用日期:2024-12-06
  • 在线发布日期:
  • 出版日期:
文章二维码