基于声发射信号的压力容器异常检测模型
DOI:
CSTR:
作者:
作者单位:

山东华鲁制药有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


AENet: Anomaly Detection Model for Pressure Vessels Based on Acoustic Emission Signals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着工业设备安全要求的提高,压力容器的监测和异常检测日渐重要;针对这个问题,采用基于卷积神经网络和长短期记忆网络的深度学习方法对压力容器声发射信号进行了监测和异常检测分析,解决传统方法在复杂信号处理中的不足;通过CNN提取信号的局部空间特征,结合LSTM捕捉时间序列的短期和长期依赖性,实现对原始时域信号的重建;通过计算重建信号与输入信号之间的误差判断异常信号的存在;实验测试表明,该方法能够显著提高异常检测的精度和鲁棒性,在检测压力容器泄漏时准确率达到93.58%;与现有的AE、VAE及其他基于深度学习的自编码器方法相比,提出的方法在捕捉复杂时间序列信号的特征上更具优势;此外,该方法显著减少了误报和漏报现象;为压力容器的安全监控提供了可靠保障;满足了工业工程应用中的实际需求;具有重要的工程应用价值。

    Abstract:

    With the increasing safety requirements for industrial equipment, the monitoring and anomaly detection of pressure vessels have become increasingly important; to address this issue, a deep learning method based on convolutional neural network (CNN) and long short-term memory (LSTM) was used to monitor and analyze the acoustic emission (AE) signals of pressure vessels, overcoming the limitations of traditional methods in processing complex signals; CNN was employed to extract the local spatial features of the signals, while LSTM captured the short-term and long-term dependencies in the time series to reconstruct the original time-domain signals; the presence of anomalous signals was determined by calculating the error between the reconstructed signal and the input signal; experimental results demonstrated that this method significantly improved the accuracy and robustness of anomaly detection, achieving an accuracy of 93.58% in detecting pressure vessel leaks; compared with existing methods such as AE, VAE, and other deep learning-based autoencoder methods, the proposed method showed greater advantages in capturing the characteristics of complex time-series signals; in addition, this method significantly reduced false positives and false negatives, providing reliable security monitoring for pressure vessels; meeting the practical needs of industrial engineering applications; and having significant engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

谢遵强,陈双叶,刘明珠.基于声发射信号的压力容器异常检测模型计算机测量与控制[J].,2025,33(11):118-123.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-25
  • 最后修改日期:2024-12-11
  • 录用日期:2024-12-12
  • 在线发布日期: 2025-11-24
  • 出版日期:
文章二维码