基于IVMD-WPD的绝缘子脱粘信号提取方法设计
DOI:
CSTR:
作者:
作者单位:

中北大学信息与通信工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省自然科学基金(20210302124202)、国家自然科学基金(U23A20636)


Research on Extraction Method of Insulator Unsticking Signal Based on IVMD-WPD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前传统信号处理方法无法有效解决针式复合绝缘子脱粘超声信号模态混叠和噪声较大的问题,为此提出了一种改进变分模态分解联合小波包分解的信号提取方法。此方法通过将樽海鞘群寻优算法替代现有国内外主流的针对变分模态分解的优化算法,之后将分解后的各分量利用小波包去噪算法进行处理和重构,从而得到较干净的脱粘信号。经模拟实验,该方法能在不改变寻优效果的同时,有效提升针对模态数和惩罚因子的寻优速度,较大幅度提升模拟加噪信号的处理效果。经实物实验结果表明,该方法能有效解决脱粘信号第二回波的模态混叠问题和信号中存在较大电路固有噪声的问题,同时处理后的B扫图像成像效果也有较大改善。

    Abstract:

    At present, traditional signal processing methods can not effectively solve the problems of mode aliasing and large noise of ultrasonic signal of needle composite insulator, so a signal extraction method based on improved variational mode decomposition and wavelet packet decomposition is proposed. In this method, the salp swarm algorithm replaces the existing domestic and foreign mainstream optimization algorithms for variational mode decomposition, and then the decomposed components are processed and reconstructed by wavelet packet denoising algorithm, so as to obtain a clean de-sticking signal. The simulation results show that this method can effectively improve the optimization speed of mode number and penalty factor without changing the optimization effect, and greatly improve the processing effect of analog and noisy signals. The experimental results show that this method can effectively solve the problem of the mode aliasing of the second echo and the problem of large inherent circuit noise in the signal, and the imaging effect of the processed B-scan image is also greatly improved.

    参考文献
    相似文献
    引证文献
引用本文

周志鹏,陈友兴,王召巴,逯丰亮.基于IVMD-WPD的绝缘子脱粘信号提取方法设计计算机测量与控制[J].,2025,33(3):226-234.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-24
  • 最后修改日期:2024-12-04
  • 录用日期:2024-12-06
  • 在线发布日期: 2025-03-20
  • 出版日期:
文章二维码