基于改进YOLOv10的安全帽检测算法研究
DOI:
作者:
作者单位:

湖北三江航天江北机械工程有限公司

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:


Research on Safety Helmet Detection Algorithm Based on Improved YOLOv10
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    安全帽佩戴检测是工厂安全重要组成部分,其采用模式识别的方法对监控中工人的安全帽佩戴情况进行检测,进而实现智能监控;针对工地工厂环境下由于工人在监控中的尺度不同,场景复杂特征提取较难等问题,对YOLOv10n进行研究提出了Helmet-YOLO算法;在主干网络设计了SimC2f模块,加强了算法在复杂场景下对安全帽特征的提取和表达;在颈部采用动态选择性注意力机制,使特征融合过程中充分利用长距离语义信息;在上采样部分引入轻量化动态上采样算子,提高了上采样的质量;实验结果表明该算法在复杂场景SHWD数据集mAP50和mAP50-95分别取得了91.5%和58.2%的检测效果,在仅升高0.3GFLOPS的情况下,与YOLOv10n相比分别提高了2.2%和1.3%,检测效果取得了提升。

    Abstract:

    Safety helmet wearing detection is a critical part of factory safety, it uses pattern recognition methods to monitor workers’ helmet-wearing situations in real time to achieve intelligent surveillance; In the context of construction and factory environments, where workers in surveillance footage vary in scale and the scenes are complex, making feature extraction challenging; Thereby, research on YOLOv10n has led to the proposing of Helmet-YOLO algorithm; The SimC2f module is designed in the backbone network to enhance the algorithm’s ability to extract and represent helmet features in complex scenes; A dynamic selective attention mechanism is adopted in the neck network to ensure that long-range semantic information is fully utilized during feature fusion. A lightweight dynamic upsampling operator is introduced in the upsampling part to improve the quality of upsampling. Experimental results show that the algorithm achieves detection accuracies of 91.5% for mAP50 and 58.2% for mAP50-95 on the SHWD dataset. With an increase of only 0.3 GFLOPS, the algorithm has increased 2.2% and 1.3% in mAP50 and mAP50-95 compared to YOLOv10n, has an improvement in detection performance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-22
  • 最后修改日期:2024-12-03
  • 录用日期:2024-12-06
  • 在线发布日期:
  • 出版日期:
文章二维码