基于改进MobileNetV2的金属表面缺陷分类方法
DOI:
作者:
作者单位:

延安大学 物理与电子信息学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52365069)


Metal Surface Defect Classification Method Based on Improved MobileNetV2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    金属表面缺陷检测是工业制造中质量控制的关键环节;传统的人工检测方法由于成本高、效率低,难以满足现代制造业对高精度与高效率的需求;提出了一种基于MobileNetV2的改进网络模型,用于提高金属表面缺陷检测的精度与效率;在MobileNetV2网络基础上,引入坐标注意力机制以增强特征学习能力,采用深度可分离思想改进Inception模块,在增强网络对多尺度特征的提取能力的同时保持模型参数量;通过图像增强技术处理数据集,以提升网络的鲁棒性;实验在NEU-DET金属缺陷数据集上进行,验证了模型的有效性;IC_MobileNetV2模型在验证集上取得了92.8%的准确率,与原始的MobileNetV2、AlexNet、GoogleNet、DenseNet、ResNet34和ResNet50相比,准确率分别提高了5.6、2.8、0.9、1.7和1.7个百分点;实验结果表明,该方法在金属表面缺陷分类任务中具有较好的应用潜力。

    Abstract:

    Metal surface defect detection is a crucial aspect of quality control in industrial manufacturing; traditional manual inspection methods are costly and inefficient, making it difficult to meet the requirements of modern manufacturing for high precision and efficiency; a modified network model based on MobileNetV2 is proposed to improve the accuracy and efficiency of metal surface defect detection; the model introduces the Coordinate Attention (CA) mechanism to enhance feature learning ability and incorporates an improved lightweight Inception_DSC module to strengthen the extraction of multi-scale features; image augmentation techniques are applied to the dataset to improve the robustness of the network; experiments conducted on the NEU-DET metal defect dataset validate the effectiveness of the model; IC_MobileNetV2 achieves a validation accuracy of 92.8%, which is 5.6, 2.8, 0.9, 1.7, and 1.7 percentage points higher than MobileNetV2, AlexNet, GoogleNet, DenseNet, ResNet34, and ResNet50, respectively; experimental results show that this method has good practical significance in metal surface defect classification.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-21
  • 最后修改日期:2024-11-30
  • 录用日期:2024-12-03
  • 在线发布日期:
  • 出版日期:
文章二维码