基于自适应跨维加权网络的轻量型人体姿态检测
DOI:
CSTR:
作者:
作者单位:

中国民航大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

中央高校基本科研基金项目(3122018S003);民航局安全能力建设基金项目([2024]28);民航局安全能力建设基金项目([2023]50)


Lightweight high-resolution network based on adaptive cross-dimensional weighting for human pose estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人体姿态检测的核心是准确检测人体关键点,由于高分辨率网络存在着一定局限性,对此,提出一种自适应跨维加权高分辨率网络;针对网络跨维信息交互不足的问题,采用跨维分离卷积方法提取信息,实现了在空间和通道之间有效的信息交换;针对关键点定位不精确的问题,采用自适应上下文建模方法,通过自适应变换和输入特征的空间加权,增强了网络捕捉复杂空间关系的能力,使得网络能够提取多尺度上下文信息并建立跨维度依赖关系,从而在不增加计算复杂度的情况下提高了准确性;此外,还引入了坐标注意力机制融合来自不同分支和规模的特征,使检测准确性得到进一步提升;经COCO和MPII数据集实验测试,与主流轻量型网络相比,自适应跨维加权高分辨率网络性能更好,兼顾了效率与精度。

    Abstract:

    Human pose detection fundamentally involves the precise localization of key anatomical points on the human body, which is pivotal for a wide range of visual perception tasks. Despite the notable advancements in high-resolution networks, they exhibit inherent limitations that hinder their performance. To address these challenges, we introduce the Adaptive Cross-Dimensional Weighting High-Resolution Network (ACW-HRNet), a novel architecture designed to enhance pose detection accuracy. Specifically, to mitigate the problem of inadequate interaction between cross-dimensional information, we propose the adoption of cross-dimensional split convolution, a technique that facilitates the efficient exchange of information between spatial and channel dimensions. To further improve the precision of key point localization, we integrate Adaptive Context Modeling (ACM), which augments the network's capacity to capture complex spatial relationships through adaptive transformations and spatial weighting of the input features. This approach enables the network to extract rich, multi-scale contextual information while simultaneously establishing cross-dimensional dependencies, resulting in a marked improvement in accuracy without incurring additional computational overhead. Moreover, we incorporate a coordinate attention mechanism that facilitates the fusion of multi-branch and multi-scale features, further enhancing detection accuracy. Empirical evaluations conducted on the COCO and MPII datasets demonstrate that ACW-HRNet significantly outperforms leading lightweight networks, achieving a harmonious balance between computational efficiency and detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王力,谷日涵.基于自适应跨维加权网络的轻量型人体姿态检测计算机测量与控制[J].,2025,33(11):73-82.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-10
  • 最后修改日期:2024-11-18
  • 录用日期:2024-11-19
  • 在线发布日期: 2025-11-24
  • 出版日期:
文章二维码