基于CNN-BiLSTM-Attention的油气井固井施工参数监测与预测研究
DOI:
CSTR:
作者:
作者单位:

1.中海油田服务股份有限公司;2.南京航空航天大学机电学院

作者简介:

通讯作者:

中图分类号:

TP277.2

基金项目:

中国航天科工集团基础科研项目(SCA24003)。


Research on Key Parameter Monitoring and Progress Prediction of Oil and Gas Well Cementing Construction Based on Cloud Edge Collaboration and Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在深水、深井和超深井油气勘探领域,油气井固井施工面临着作业危险高、劳动强度大等多重挑战,导致油气井固井施工参数监测与进度预测难;为了解决这些问题,对基于云边协同和深度学习的油气井固井施工关键参数监测与进度预测进行了研究;通过云边协同组网,在现场采集和存储固井流量、压力、温度等数据,并利用MQTT轻量化通讯协议网络进行远程传输;研究基于CNN-BiLSTM-Attention网络的油气井固井施工进度预测数学模型,通过CNN网络提取油气井固井施工进度的关键特征要素,基于BiLSTM挖掘关键特征要素之间的关联关系,运用Attention机制对重要特征进行权重分配,以便抽取出更加关键及重要的油气井固井施工进度信息;经实验测试实现了油气井参数监测与预测的功能,表明所提方法具有明显的预测精度优势且云边协同平台可以实时反映油气井固井施工过程中的各项关键参数。

    Abstract:

    In the field of deepwater, deep well, and ultra deep well oil and gas exploration, oil and gas well cementing construction faces multiple challenges such as high operational risks and high labor intensity, which makes it difficult to monitor and predict the parameters and progress of oil and gas well cementing construction; To address these issues, research has been conducted on key parameter monitoring and progress prediction for oil and gas well cementing construction based on cloud edge collaboration and deep learning; Through cloud edge collaborative networking, data such as cementing flow rate, pressure, temperature, etc. are collected and stored on-site, and remote transmission is carried out using MQTT lightweight communication protocol network; Research on a mathematical model for predicting the progress of oil and gas well cementing construction based on CNN-BiLSTM-Attention network, extracting key feature elements of oil and gas well cementing construction progress through CNN network, mining the correlation between key feature elements based on BiLSTM, and using Attention mechanism to allocate weights to important features, in order to extract more critical and important information about oil and gas well cementing construction progress; Through experimental testing, the function of monitoring and predicting oil and gas well parameters has been achieved, indicating that the proposed method has significant advantages in prediction accuracy, and the cloud edge collaborative platform can real-time reflect various key parameters during the cementing process of oil and gas wells.

    参考文献
    相似文献
    引证文献
引用本文

田军政,谢雄武,钱坤,刘长春,马业.基于CNN-BiLSTM-Attention的油气井固井施工参数监测与预测研究计算机测量与控制[J].,2025,33(2):54-62.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-19
  • 最后修改日期:2024-10-10
  • 录用日期:2024-10-11
  • 在线发布日期: 2025-02-26
  • 出版日期:
文章二维码