应用轻量化FEB-YOLO模型的荔枝果实动态识别计数方法
作者单位:

1.吉林化工学院 信息与控制工程学院;2.广东石油化工学院 自动化学院

中图分类号:

TP391.41

基金项目:

国家自然科学基金资助项目(62073091);广东省普通高校重点领域(新一代信息技术)专项(2020ZDZX3042)


Dynamic recognition and counting method of litchi fruit using lightweight FEB-YOLO model
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对大场景自然环境下荔枝存在小目标、重叠和遮挡等特点,提出一种轻量化荔枝检测模型FEB-YOLO。该模型基于YOLOv8在C2f模块中引入PConv替代部分常规卷积以实现轻量化改进,同时融入EMA注意力机制提高算法的特征提取能力;将颈部网络替换为融合P2特征层的BiFPN,增强模型对不同尺寸的跨尺度特征融合;在回归损失函数中引入NWD度量,提高模型对荔枝小目标的学习能力,降低漏检率。经实验测试得到FEB-YOLO模型的P、R、mAP对比原始模型分别提高1.4、1.6、1.7个百分点,其参数量和计算量分别降低47.3%和27.1%,改进后模型占用的计算资源更少,同时能够明显提高在复杂环境下的识别精度。为实现果园场景下实时估计荔枝产量,提出了一种高效的荔枝果实动态识别计数方法,通过将FEB-YOLO作为BoT-SORT跟踪器的目标检测器,将FEB-YOLO的识别输出作为BoT-SORT的输入,实现动态视频序列的跟踪计数,最后以实例验证了该方法的有效性和可行性。所得改进模型具有较好的鲁棒性且体积小,可以嵌入到边缘设备中,不仅可用于实时估计荔枝产量,还可用于规划采摘和贮藏,为果园资源分配提供可靠支撑。

    Abstract:

    A lightweight litchi detection model FEB-YOLO was proposed to detect litchi with small target, overlap and occlusion in large natural environment. Based on YOLOv8, the model introduced PConv to replace part of the conventional convolution in the C2f module to achieve lightweight improvement, and integrated EMA attention mechanism to improve the feature extraction capability of the algorithm. The neck network was replaced by BiFPN with P2 feature layer to enhance the cross-scale feature fusion of different sizes. The NWD measure was introduced into the regression loss function to improve the model's learning ability for litchi small targets and reduce the rate of missing detection. The experimental results show that the P, R and mAP of FEB-YOLO model are increased by 1.4%, 1.6% and 1.7%, respectively, compared with the original model, and the number of Params and FLOPs are reduced by 47.3% and 27.1%, respectively. The improved model has less computing resources, and can improve the recognition accuracy under complex conditions. In order to realize real-time estimation of litchi yield in orchard scene, an efficient dynamic recognition and counting method of litchi fruit is proposed. By using FEB-YOLO as the target detector of BoT-SORT tracker and the recognition output of FEB-YOLO as the input of BoT-SORT, dynamic video sequence tracking and counting is realized. Finally, an example is given to verify the effectiveness and feasibility of the proposed method. The improved model has good robustness and small size, and can be embedded in the edge equipment, which can not only be used for real-time estimation of litchi yield, but also for planning picking and storage, providing reliable support for orchard resource allocation.

    参考文献
    相似文献
    引证文献
引用本文

李景顺,刘美,孟亚男,韩慧子.应用轻量化FEB-YOLO模型的荔枝果实动态识别计数方法计算机测量与控制[J].,2025,33(2):229-237.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-14
  • 最后修改日期:2024-09-28
  • 录用日期:2024-10-08
  • 在线发布日期: 2025-02-26
文章二维码