基于二维特征和CNN分析的无人机操控员情绪状态检测研究
DOI:
作者:
作者单位:

空军工程大学 航空机务士官学校

作者简介:

通讯作者:

中图分类号:

TP520.20

基金项目:


The Emotional Status Testing of UAV Operator Based on the Two-dimensional Feature Maps and CNN Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实时检测无人机操控员的情绪状态,提出了一种基于二维特征和卷积神经网络(CNN)分析的无人机操控员情绪状态检测算法。针对脑电信号(EEG)中眼电伪迹干扰的问题,设计实现了一种基于二阶盲辨识(SOBI)的去除伪迹算法。针对其它模型检测率低的问题,通过微分熵特征(Differential Entropy, DE)提取、2-DMapping映射及稀疏运算将一维脑电信号转化为包含情感信息的二维特征图,并对脑电信号进行扩增处理,提出二维特征图与CNN相结合的方式,使得各通道的情感特征相互关联。利用CNN自动学习深层次特征的优势,深度挖掘二维特征图里的脑电情感信息,较好的实现了无人机操控员积极、中性以及消极三种情绪状态检测。

    Abstract:

    In order to detect the emotional state of the UAV operator in real time, a UAV operator emotional state detection algorithm analyzed based on the Two-dimensional Feature Maps and Convolutional Neural Network(CNN). Aiming at the problem of the interference comes from ocular artifacts in electroencephalogram signals(EEG), a removal algorithm of the Second Order Blinding Identification(SOBI) is designed. For the problems of low detection rates of other models, extraction of one-dimensional brain electrical signal into a two-dimensional special symbol with emotional information through the Differential Entropy (DE) extraction, 2-D Mapping mapping and sparse computing, and the electrical signal is converted into emotional information. The amplification treatment is performed, and the method of combining the Two-dimensional Feature Maps with CNN is proposed to make the emotional characteristics of each channel interconnected. Using CNN to automatically learn the advantages of deep-level characteristics, and deeply excavate the emotional information of the Electrical Electricity in the Two-dimensional Feature Maps, it has better realized the three emotional states of the UAV operator positive, neutrality and negative emotional state.

    参考文献
    相似文献
    引证文献
引用本文

杨宇超,刘聪.基于二维特征和CNN分析的无人机操控员情绪状态检测研究计算机测量与控制[J].,2024,32(12):96-102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-12
  • 最后修改日期:2024-09-20
  • 录用日期:2024-10-08
  • 在线发布日期: 2024-12-24
  • 出版日期:
文章二维码