数学形态学和LMD算法下滚动轴承全生命周期故障检测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Full Life Cycle Fault Detection of Rolling Bearings under Mathematical Morphology and LMD Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当滚动轴承在高速旋转时,会产生振动和摩擦,容易引起轴承表面的细微磨损和损伤,且在高温、高压、腐蚀等恶劣的工作环境中,会加剧轴承的磨损和腐蚀,使表面缺陷更加复杂和难以区分。为了准确监测和评估轴承的状况、及早发现潜在的故障迹象,提出基于数学形态学和LMD算法的滚动轴承全生命周期故障检测方法。根据滚动轴承的故障机理及特征,设置滚动轴承故障检测标准,模拟滚动轴承全生命周期工作过程。分别采集滚动轴承的表面图像数据和内部振动数据,通过滤波、增强等操作,完成初始工作参数的预处理。利用数学形态学基于形状特征提取滚动轴承表面图像的微小特征,包括表面形状和微小细节结构等,通过LMD算法分解复杂信号为多个单一调频和窄带调频分量,提取峭度、频率等关键特征。结合数学形态学和LMD算法可以全方位地提取滚动轴承在不同生命周期阶段的故障特征,为故障诊断提供更为全面的信息。采用特征匹配的方式,得出滚动轴承故障类型、位置以及故障量的检测结果。通过性能测试实验得出结论:与当前的故障检测方法相比,优化设计方法的故障类型误检率明显降低,具有良好的故障检测能力。

    Abstract:

    When rolling bearings rotate at high speed, they generate vibration and friction, which can easily cause minor wear and damage to the bearing surface. In harsh working environments such as high temperature, high pressure, and corrosion, it can exacerbate the wear and corrosion of the bearing, making surface defects more complex and difficult to distinguish. In order to accurately monitor and evaluate the condition of bearings and detect potential signs of faults early, a rolling bearing full life cycle fault detection method based on mathematical morphology and LMD algorithm is proposed. Based on the fault mechanism and characteristics of rolling bearings, set fault detection standards for rolling bearings and simulate the entire life cycle working process of rolling bearings. Collect surface image data and internal vibration data of rolling bearings separately, and complete the preprocessing of initial working parameters through filtering, enhancement, and other operations. Using mathematical morphology to extract small features of rolling bearing surface images based on shape features, including surface shape and small detail structures, and using LMD algorithm to decompose complex signals into multiple single frequency modulation and narrowband frequency modulation components, key features such as kurtosis and frequency are extracted. The combination of mathematical morphology and LMD algorithm can comprehensively extract the fault characteristics of rolling bearings at different life cycle stages, providing more comprehensive information for fault diagnosis, and using feature matching to obtain detection results of rolling bearing fault types, positions, and amounts. The conclusion drawn from performance testing experiments is that compared with current fault detection methods, the optimized design method significantly reduces the false detection rate of fault types and has good fault detection capabilities.

    参考文献
    相似文献
    引证文献
引用本文

严峰军.数学形态学和LMD算法下滚动轴承全生命周期故障检测研究计算机测量与控制[J].,2024,32(12):50-56.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-24
  • 最后修改日期:2024-07-04
  • 录用日期:2024-07-05
  • 在线发布日期: 2024-12-24
  • 出版日期:
文章二维码