基于CNN-A-BiLSTM的无刷直流电机故障诊断方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西壮族自治区科技计划项目(桂科AB20159008)


Research on Diagnosis Method of Brushless DC Motor Based on CNN-A-BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    无刷直流电机是大型设备重要的动力装置之一,电机的运行状态与设备的运行状态高度一致。但当前现有的电机故障诊断方法难以在多电机或存在电磁干扰的环境下对电机做出准确的状态判断。为了实现复杂环境的无刷直流电机状态诊断,研究融合了卷积神经网络算法和长短期记忆网络算法。研究通过长短期记忆网络算法的双向传播捕捉复杂环境对电机的影响特征,从而提高模型的诊断精准度。实验结果表明,提出模型在机电设备故障诊断数据集上的平均收敛时间为8.91min,在电机故障数据集上的平均收敛时间为12.66min,收敛时间均低于同组对照模型。其次提出模型的F1值为84.17%,比对照模型分别高出0.87%和5.08%。此外,在对电机故障前后电压检测情况对比中,提出模型对电机故障发生时的检测结果更为详细。根据实验结果可以得出,研究提出的电机诊断模型具有优秀的性能,满足电机诊断行业的精准度需求。

    Abstract:

    Brushless DC motor is one of the important power devices for large equipment, and the operating status of the motor is highly consistent with the operating status of the equipment. However, current motor fault diagnosis methods are difficult to make accurate state judgments on motors in environments with multiple motors or electromagnetic interference. In order to achieve state diagnosis of brushless DC motors in complex environments, a fusion of convolutional neural network algorithm and long short-term memory network algorithm was studied. Researching the bidirectional propagation of long short-term memory network algorithms to capture the impact characteristics of complex environments on motors, thereby improving the diagnostic accuracy of the model. The experimental results show that the average convergence time of the proposed model on the mechanical and electrical equipment fault diagnosis dataset is 8.91 minutes, and the average convergence time on the motor fault dataset is 12.66 minutes, both of which are lower than the control models in the same group. Secondly, the F1 value of the proposed model is 84.17%, which is 0.87% and 5.08% higher than the control model, respectively. In addition, in the comparison of voltage detection before and after motor faults, the proposed model provides more detailed detection results when motor faults occur. According to the experimental results, it can be concluded that the proposed motor diagnosis model has excellent performance and meets the accuracy requirements of the motor diagnosis industry.

    参考文献
    相似文献
    引证文献
引用本文

覃仕明,马鹏.基于CNN-A-BiLSTM的无刷直流电机故障诊断方法研究计算机测量与控制[J].,2024,32(9):118-124.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-01
  • 最后修改日期:2024-04-25
  • 录用日期:2024-04-26
  • 在线发布日期: 2024-10-08
  • 出版日期:
文章二维码