采用改进HPO-LSTM-Attention算法的太阳辐射散射预测
DOI:
CSTR:
作者:
作者单位:

重庆理工大学两江人工智能学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家制造业重大专项项目(TC220A04A-43)


采用改进HPO-LSTM-Attention算法的太阳散射辐射预测
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有对于太阳散射辐射的预测方法准确度低等问题,构建了HPO-LSTM-Attention组合模型,为了进一步提高模型预测的准确度为HPO设计了一种新的自适应动态权重,从而可以平衡算法的全局探索性和局部开发性。经过注意力机制和HPO两种算法的优化使得LSTM的预测性能有了极大的提升。实验结果表明新提出的HPO-LSTM-Attention模型优于LSTM、BiLSTM和HPO-LSTM模型,在MAE、MAPE、R2和MSE评价指标下表现更出色,与未改进模型相比其均方差减少了近40%。证明了HPO-LSTM-Attention模型在预测太阳散射辐射方面的有效性。

    Abstract:

    In order to solve the problem of low accuracy of existing prediction methods for solar scattered radiation, an HPO-LSTM-Attention combination model was constructed. In order to further improve the accuracy of model prediction, a new adaptive dynamic weight was designed for HPO, which can balance Global explorability and local development of the algorithm. After the optimization of the attention mechanism and HPO algorithms, the prediction performance of LSTM has been greatly improved. Experimental results show that the newly proposed HPO-LSTM-Attention model is better than the LSTM, BiLSTM and HPO-LSTM models, and performs better under the MAE, MAPE, R2 and MSE evaluation indicators. Compared with the unimproved model, its mean square error is reduced by nearly 40%. The effectiveness of the HPO-LSTM-Attention model in predicting solar scattered radiation is demonstrated.

    参考文献
    相似文献
    引证文献
引用本文

刘钦晓,孙德,赵长春,张俊安,赵芬.采用改进HPO-LSTM-Attention算法的太阳辐射散射预测计算机测量与控制[J].,2025,33(5):69-78.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-04-24
  • 录用日期:2024-04-24
  • 在线发布日期: 2025-05-20
  • 出版日期:
文章二维码