用于导览机器人的轻量化行人姿态检测算法
作者单位:

西南交通大学机械工程学院

中图分类号:

TP183;TP391.4

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对搭载嵌入式设备的智能导览机器人算力较低,分析参观者行为困难的问题,提出一种基于轻量化YOLOv5的姿态检测算法。在YOLOv5的Backbone部分采用基于GhostNet设计的C3Ghost并在Bottleneck部分采用GSConvns和VoV-GSCSP设计细颈结构,在此基础上使用Slim算法和PAGCP算法分别对模型进行进一步压缩。基于YOLOv5提供的目标检测结果使用DeepSORT算法和SlowFast算法实现对视频中连续的人类目标进行跟踪和行人的姿态检测。经实验验证轻量化改进的YOLOv5其FLOPs下降71%,Parameters下降68%,配合行人姿态检测算法能够准确地识别人类目标并对行人的姿态进行分类。

    Abstract:

    Aiming at the problem of running algorithms and accurately analyzing pedestrians' poses on mobile low-computing-power devices for intelligent guided tour robots, a pose detection algorithm based on lightweight YOLOv5 is proposed. In the Backbone part of YOLOv5, C3Ghost based on GhostNet is used and in the Bottleneck part, GSConvns and VoV-GSCSP are used to design the thin-neck structure, based on which Slim algorithm and PAGCP algorithm are used for further compression of the model, respectively. Based on the target detection results provided by YOLOv5, the DeepSORT algorithm and SlowFast algorithm are used to realize the tracking of consecutive human targets in the video and the attitude detection of pedestrians. It is experimentally verified that the lightweight and improved YOLOv5 has 71% reduction in FLOPs and 68% reduction in Parameters, and together with the pedestrian pose detection algorithm can accurately recognize human targets and classify pedestrian poses.

    参考文献
    相似文献
    引证文献
引用本文

徐启航,李 迎,刘雪凯,孟祥印,任永川.用于导览机器人的轻量化行人姿态检测算法计算机测量与控制[J].,2025,33(5):53-61.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-11
  • 最后修改日期:2024-05-06
  • 录用日期:2024-05-06
  • 在线发布日期: 2025-05-20
文章二维码