基于SSA-TSVR的飞机状态预测方法研究
DOI:
作者:
作者单位:

中国民航大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目子课题(2023YFB4302901)


Research on Aircraft State Prediction Method Based on SSA-TSVR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了构建地面飞行安全态势监测系统,针对飞机状态数据向地面传输过程中出现数据传输异常情况而导致无法对飞机状态进行实时监控的问题,提出一种基于SSA-TSVR的飞机状态预测方法,使用随机森林算法对真实飞行数据进行特征重要度分析,筛选与待预测飞机状态参数关系密切的重要参数,获得待预测参数与飞行数据间重要度关系;通过孪生支持向量回归算法建立预测模型,对缺失的关键飞行状态参数进行预测;并运用飞鼠搜索算法对孪生支持向量回归模型进行优化,根据不同预测对象选择对应的最优核函数,提高了模型预测精度;以飞行高度、速度为预测对象进行实验验证,预测模型实现了利用不完整飞行数据对飞机状态进行准确预测,对飞机飞行状态监测有着重要意义。

    Abstract:

    In order to build a ground flight safety situation monitoring system, an aircraft status prediction method based on SSA-TSVR was proposed to analyze the feature importance of real flight data, aiming at the problem that real-time monitoring of aircraft status data could not be carried out due to abnormal data transmission during the transmission process of aircraft status data to the ground. The important parameters that are closely related to the aircraft state parameters to be predicted are screened, and the importance relationship between the parameters to be predicted and the flight data is obtained. The twin support vector regression algorithm was used to build a prediction model to predict the missing key flight state parameters. The twin support vector regression model is optimized by using the flying squirrel search algorithm, and the optimal kernel function is selected according to different prediction objects to improve the prediction accuracy of the model. With flight altitude and speed as prediction objects, the prediction model realizes the accurate prediction of aircraft state by using incomplete flight data, which is of great significance for aircraft flight state monitoring.

    参考文献
    相似文献
    引证文献
引用本文

赵晗,樊智勇,刘涛.基于SSA-TSVR的飞机状态预测方法研究计算机测量与控制[J].,2024,32(9):125-132.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-08
  • 最后修改日期:2024-03-29
  • 录用日期:2024-04-01
  • 在线发布日期: 2024-10-08
  • 出版日期:
文章二维码