基于Transformer-Bi-LSTM模型的武器装备剩余寿命预测方法
DOI:
作者:
作者单位:

上海机电工程研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Weaponry residual life prediction method based on Transformer-Bi-LSTM model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    武器装备担负保卫国土安全的重要使命,其保持稳定运行状态具有重大国防、政治意义;因其装备运行状态不便中断、故障定位过程复杂,使得传统维修方式效率较低;装备使用数据具有连续性、长期性、不平稳性,甚至一些深度学习模型无法处理其中的退化状态历史依赖与关联问题;通过构建元器件层级的剩余寿命预测架构,对特征工程、退化指标构建以及Transformer-Bi-LSTM模型开展研究,采用距离编码技术,实现针对深度学习模型的技术创新,优化模型预测效果;基于某型武器装备主要器件正常试样数据,进行本方法分析验证,在器件已运行时间达到90%设计试验寿命长度时能够进行有效且准确的剩余寿命预测,所提方法满足武器装备器件寿命预警及更换提醒、保障装备战备完好性的应用需求。

    Abstract:

    Weaponry is responsible for the important mission of safeguarding national security, and its stable operation is of great nation defense and political significance. Due to the inconvenient interruption of the operation status of the equipment and the complex fault location process, the traditional maintenance method is inefficient. The equipment usage data is continuous, long-term, and instability, and some deep learning models cannot deal with the historical dependence and association of degraded states. By constructing the remaining life prediction architecture at the component level, the feature engineering, degradation index construction and Transformer-Bi-LSTM model are studied, and distance coding are used to realize the technological innovation of the deep learning model and optimize the prediction effect of the model. Based on the normal sample data of the primary components of a weapon equipment, this method has been analyzed and validated. It can effectively and accurately predict the remaining life when the device has been in operation for 90% of its designated test life span. The proposed method meets the requirements for early warning and replacement reminders for weapon equipment devices, ensuring equipment combat readiness integrity.

    参考文献
    相似文献
    引证文献
引用本文

袁玉昕,程跃兵,熊敏艳,高王升,张昱彤.基于Transformer-Bi-LSTM模型的武器装备剩余寿命预测方法计算机测量与控制[J].,2024,32(7):203-210.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-09
  • 最后修改日期:2024-04-27
  • 录用日期:2024-04-22
  • 在线发布日期: 2024-08-02
  • 出版日期:
文章二维码