基于多视图融合的微弱缺陷检测增强方法
DOI:
作者:
作者单位:

江南大学机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(跨视域场景下的视频目标持续性跟踪方法研究)


Enhanced Method for Faint Defects Detection Based on Multi-View Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电池金属表面浅划伤、浅凹陷等微弱缺陷在传统二维图像中对比度低、与背景纹理难区分等问题,降低了缺陷的检出率;为解决以上问题,提出了一种基于多视图融合的微弱缺陷检测增强方法;针对微弱缺陷在不同光源方向下合成的三维信息存在缺失问题,提出通过多方向光源装置采集八张不同光源角度图像增加金属表面的光度信息;通过改进的八方向光度立体简化模型获取金属表面三维信息,凸显缺陷的三维特征;针对微弱缺陷在深度图像中存在的图像模糊、对比度低下等问题,通过分析微弱缺陷高度特征呈现角度敏感性特点,拆分抽取深度相关性高的三维信息分量图,由融合系数融合得到增强图像,提高了微弱缺陷的对比度;实验结果表明,该方法应用于实际金属表面缺陷图像检测中,检测精确率提升了19.8%,召回率提升了18.9%,能够较好地解决金属表面微弱缺陷图像检测对比度低下的问题。

    Abstract:

    Faint defects such as shallow scratches and dents on the surface of battery metals pose challenges in terms of low contrast and difficulty in distinguishing them from the background texture in traditional 2D images, leading to decreased detection rates. To address these issues, an enhanced detection method based on multi-view fusion for faint defect identification is proposed. To tackle the problem of missing 3D information of faint defects synthesized under different lighting directions, eight images with different lighting angles are captured using a multi-directional lighting device to augment the photometric information of the metal surface. The improved eight-directional photometric stereo simplification model is employed to obtain the 3D information of the metal surface, highlighting the three-dimensional characteristics of the defects. To address the issues of image blurring and low contrast of faint defects in depth images, the angle sensitivity of height features of faint defects is analyzed. The depth-related 3D information component maps with high correlation are extracted and fused using fusion coefficients to generate an enhanced image, thereby improving the contrast of faint defects. Experimental results demonstrate that the proposed method achieves a 19.8% improvement in detection accuracy and an 18.9% improvement in recall rate in the detection of actual metal surface defects, effectively addressing the low contrast issue in the detection of faint defects in metal surface images.

    参考文献
    相似文献
    引证文献
引用本文

邵天成,吴静静.基于多视图融合的微弱缺陷检测增强方法计算机测量与控制[J].,2024,32(8):86-92.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-26
  • 最后修改日期:2024-02-27
  • 录用日期:2024-03-01
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码