基于对抗机器学习的工业控制网络欺骗攻击行为检测系统设计
DOI:
作者:
作者单位:

山西警察学院

作者简介:

通讯作者:

中图分类号:

基金项目:

2022年山西省教育厅教学改革创新项目【名称:基于多维驱动的信息安全专业人才培养机制研究(项目编号:J20221297)】


Design of deception attack detection system for industrial control networks based on adversarial machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    欺骗攻击行为会干扰工业控制网络对传输信息的判断能力,从而使得风险性数据进入网络主机,造成网络安全性下降的问题。为避免上述情况的发生,设计基于对抗机器学习的工业控制网络欺骗攻击行为检测系统。设置攻击行为采集、处理、检测验证三类子模块单元,完成欺骗攻击行为检测系统的功能性模块设计。在对抗机器学习算法中定义攻击行为,并以此为基础,提取欺骗攻击行为特征,实现对攻击行为的识别。分析工业控制网络的安全风险,联合欺骗攻击行为的风险性度量条件,定义具体的检测建模标准,从而实现对工业控制网络欺骗攻击行为信息的检测。实验结果表明,设计方法的应用可以按照数据样本传输波长的差异性,将欺骗性攻击信息检测出来,且召回率测试结果在0.93~0.98之间,表明设计方法能够准确地检测出欺骗攻击行为,使工控网络的运行安全性得到了保障。

    Abstract:

    Deceptive attack behavior can interfere with the judgment ability of industrial control networks to transmit information, causing risky data to enter network hosts and leading to a decrease in network security. To avoid the occurrence of the above situation, design an industrial control network spoofing attack behavior detection system based on adversarial machine learning. Set up three types of sub module units for attack behavior collection, processing, and detection verification, and complete the functional module design of the deception attack behavior detection system. Define attack behavior in adversarial machine learning algorithms, and based on this, extract features of deceptive attack behavior to achieve recognition of attack behavior. Analyze the security risks of industrial control networks, establish risk measurement conditions for joint deceptive attack behaviors, define specific detection modeling standards, and thus achieve the detection of information on deceptive attack behaviors in industrial control networks. The experimental results show that the application of the design method can detect deceptive attack information based on the difference in transmission wavelength of data samples, and the recall test results are between 0.93 and 0.98, indicating that the design method can accurately detect deceptive attack behavior, ensuring the operational security of industrial control networks.

    参考文献
    相似文献
    引证文献
引用本文

张涛.基于对抗机器学习的工业控制网络欺骗攻击行为检测系统设计计算机测量与控制[J].,2024,32(10):298-304.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-24
  • 最后修改日期:2024-03-04
  • 录用日期:2024-03-11
  • 在线发布日期: 2024-10-30
  • 出版日期:
文章二维码