基于边缘设备的快速单目深度估计算法研究
DOI:
CSTR:
作者:
作者单位:

上海大学通信与信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,62371278,高维结构约束的光场视频稀疏模型压缩理论与方法),国家自然科学基金项目(面上项目,62371279,QoE驱动的360度全景视频编码算法优化研究)


Research on Fast Monocular Depth Estimation Algorithm Based on Edge Devices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单目深度估算采用单一相机、安装方便,在机器人、无人机领域有广泛的应用;由于单目深度估计算法采用基于编码-解码的复杂的深度神经网络结构会导致边缘设备实时推理效率较低的问题,进而提出了一种可以在边缘设备上实时深度估计的网络架构;该架构采用倒置残差块设计的编码端,采用残差深度可分离卷积与最近邻插值重新设计的解码端,大大减少了模型的参数和计算量,并通过跨层连接将编码网络的特征与解码网络的特征相融合增强深度图中物体的边缘细节信息;实验结果表明,提出的网络架构参数量减少了82%,计算量减少了92%,在KITTI数据集上达到了先进的性能,并且在Jetson TX2上推理速度达到了50FPS。

    Abstract:

    Monocular depth estimation, employing a single camera for its simplicity and ease of installation, is widely applied in the fields of robotics and unmanned aerial vehicles. However, the adoption of complex depth neural network structures based on encoder-decoder architectures in monocular depth estimation algorithms results in lower real-time inference efficiency on edge devices. Consequently, a network architecture is proposed to enable real-time depth estimation on edge devices. This architecture features an encoder designed with inverted residual blocks and a decoder redesigned with residual depth-wise separable convolution and nearest-neighbor interpolation. These modifications significantly reduce the model"s parameters and computational load. Moreover, through cross-layer connections, the features from the encoder and decoder networks are fused to enhance the representation of fine-grained edge details in the depth map. Experimental results demonstrate an 82% reduction in model parameters, a 92% reduction in computational load, achieving state-of-the-art performance on the KITTI dataset. Notably, the proposed architecture achieves a real-time inference speed of 50 frames per second on the Jetson TX2 platform.

    参考文献
    相似文献
    引证文献
引用本文

王文帅,韩军,邹小燕,倪源松,胡广怡.基于边缘设备的快速单目深度估计算法研究计算机测量与控制[J].,2025,33(4):262-269.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-17
  • 最后修改日期:2024-02-23
  • 录用日期:2024-02-28
  • 在线发布日期: 2025-05-15
  • 出版日期:
文章二维码