考虑火灾产物影响下的人员疏散路径规划研究
DOI:
CSTR:
作者:
作者单位:

西安科技大学 安全科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52204235)


Research on Evacuation Path Planning for People Under The Influence of Fire Products
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现代建筑火灾应急疏散过程中人员难以快速、安全疏散的问题,提高人员面对火灾的应急能力,构建基于火灾产物影响条件下的改进蚁群算法疏散路径规划模型;通过Dijkstra算法规划初始疏散路径,考虑火灾产物对人员疏散的影响,将当量速度系数引入传统蚁群算法进行改进,利用改进蚁群算法对初始疏散路径进行优化;以西安某地铁站台为例,通过PyroSim软件进行火灾模拟,获取地铁站台火灾产物的实时数据,采用Matlab软件分别进行改进蚁群算法和蚁群算法对比仿真实验和不同火灾时期下的改进蚁群算法仿真实验,对结果表明:改进后的蚁群算法提高了疏散效率和收敛速度,缩短了疏散时间和路径长度,可实现火灾疏散路线的动态规划。

    Abstract:

    In order to solve the problem of the difficulty of rapid and safe evacuation of people during the emergency evacuation of modern buildings from fire, and to improve the emergency response ability of people facing fires, an improved ant colony algorithm evacuation path planning model based on fire product influence conditions is constructed. Initial evacuation paths are planned by Dijkstra’s algorithm, the effect of fire products on evacuation of people is taken into account, equivalent velocity coefficients are introduced into the conventional ant colony algorithm, and initial evacuation paths are proposed by the improved ant colony algorithm. Taking the metro platform in Xi’an as an example, fire simulation was carried out by PyroSim, real-time data of the fire products of the metro platform were acquired. Matlab software was used to carry out simulation experiments comparing the improved ant colony algorithm and the ant colony algorithm, and simulation experiments of the improved ant colony algorithm under different fire periods, respectively. The research results show that the improved ant colony algorithm improves the evacuation efficiency and convergence speed, and shortens the evacuation time and path length. Dynamic planning of fire evacuation routes can be realized.

    参考文献
    相似文献
    引证文献
引用本文

刘纪坤,袁雪颖,王佳茹,王翠霞.考虑火灾产物影响下的人员疏散路径规划研究计算机测量与控制[J].,2025,33(4):155-161.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-13
  • 最后修改日期:2024-02-27
  • 录用日期:2024-02-28
  • 在线发布日期: 2025-05-15
  • 出版日期:
文章二维码