基于GD32的低功耗语音唤醒模块设计与实现
DOI:
CSTR:
作者:
作者单位:

1.青岛科技大学 信息科学技术学院 山东 青岛;2.青岛科技大学信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Design and Implementation of Low-power Voice Wake-up Module Based on GD32
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    唤醒模块可以为机器人等长期待机运行的设备提供快速唤醒、降低功耗等功能;低功耗及智能化是评价该类模块的重要性能指标;设计了一款基于GD32的低功耗语音唤醒模块,该模块采用微型机器学习(Tiny Machine Learning, TinyML)技术进行语音识别,将部分机器学习运算转移到单片机上进行;在电脑端对音频文件进行预处理,并将处理后的音频通过短时傅里叶变换转化为频谱图,进行模型训练;将训练好的模型由TensorFlow Lite转化为单片机可使用的C语言数组,通过微控制器开发环境将数组部署到GD32芯片上;以婴儿哭声检测为例,经实验测试,模块识别准确率约在70%左右,模型和数据集仍有进一步优化的空间;对模块的功耗也进行了测试与优化;该模块的设计与实现对微控制器实现机器学习具有一定的参考意义。

    Abstract:

    Wake-up module can provide fast wake-up, reduce power consumption and other functions for robots and other devices running on standby for a long time; low power consumption and intelligence is an important performance index for evaluating this kind of module; a low-power voice wake-up module based on GD32 is designed, which adopts the Tiny Machine Learning technology for speech recognition, and transfers part of the Machine Learning operations are transferred to the microcontroller; pre-process the audio file on the computer side, convert the audio into a spectrogram by short-time Fourier transform, and train the model; the trained model is converted by TensorFlow Lite into a C language array that can be used by the microcontroller, and deployed on the GD32 chip; take the baby cry detection as an example, after experimental testing, the module recognition accuracy rate is About 70%, the model and dataset still have room for further optimization; the power consumption of the module is tested and optimized; the design and implementation of the module has a certain reference significance for the implementation of machine learning in microcontrollers.

    参考文献
    相似文献
    引证文献
引用本文

杨晓平,马兴录,陈明,李瑶祺.基于GD32的低功耗语音唤醒模块设计与实现计算机测量与控制[J].,2025,33(3):205-212.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-12
  • 最后修改日期:2024-02-27
  • 录用日期:2024-02-28
  • 在线发布日期: 2025-03-20
  • 出版日期:
文章二维码