基于多目标浣熊优化算法的双向长短期记忆神经网络预测
DOI:
CSTR:
作者:
作者单位:

1.国网宁夏电力有限公司经济技术研究院;2.宁夏回族自治区电力设计院有限公司

作者简介:

通讯作者:

中图分类号:

TM181;

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Bidirectional long short-term memory neural network prediction based on multi-objective coati optimization algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高双向长短期记忆神经网络(BiLSTM,bidirectional long short-term memory neural network)的预测性能,针对BiLSTM存在的预测精度低、预测结果不稳定的问题,提出了一种新的多目标浣熊优化算法(MOCOA,Multi-objective coati optimization algorithm)。在浣熊优化算法(COA,coati optimization algorithm)的基础上,通过改进探索与开发算子,结合快速非支配排序与拥挤度距离计算方法建立精英浣熊保留策略,实现单目标到多目标的改进。基于所提算法,以预测均方误差(MSE,Mean square error)及预测误差方差为目标函数对BiLSTM超参数进行优化,并建立MOCOA-BiLSTM预测模型,最终实现精确稳定预测。将所提MOCOA-BiLSTM预测模型在变电工程造价数据集上进行了仿真测试,并与其他三种主流算法优化后的模型进行了对比。结果表明,所提MOCOA-BiLSTM的平均百分比误差相比与MOSSA-BiLSTM、NSGAIII-BiLSTM、MOMVO-BiLSTM分别降低了69.59%、58.43%、56.67%。

    Abstract:

    To enhance the predictive performance of the Bidirectional Long Short-Term Memory neural network (BiLSTM), and address the issues of low prediction accuracy and unstable results in BiLSTM, a novel Multi-Objective Coati Optimization Algorithm (MOCOA) was proposed. Building upon the Coati Optimization Algorithm (COA), the exploration and exploitation operators are improved and establish an elite coati retention strategy using a fast nondominated sorting and crowding distance calculation method, improving from single-objective to multi-objective optimization. Using the proposed algorithm, the hyperparameters of BiLSTM with Mean Square Error (MSE) and prediction error variance as objective functions, led to the establishment of the MOCOA-BiLSTM prediction model, ultimately achieving accurate and stable predictions. The proposed MOCOA-BiLSTM prediction model is simulated and tested on a substation engineering cost dataset, and comparisons are made with three other mainstream algorithm-optimized models. The results indicate that the MOCOA-BiLSTM exhibits a reduction of 69.59%, 58.43%, and 56.67% in average percentage error compared to MOSSA-BiLSTM, NSGAIII-BiLSTM, and MOMVO-BiLSTM, respectively.

    参考文献
    相似文献
    引证文献
引用本文

杨凯,苏艳萍,杜强,马丽玲,杨金钰.基于多目标浣熊优化算法的双向长短期记忆神经网络预测计算机测量与控制[J].,2025,33(1):36-44.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-12
  • 最后修改日期:2023-12-25
  • 录用日期:2024-01-02
  • 在线发布日期: 2025-02-07
  • 出版日期:
文章二维码