基于势场蚁群算法的仓储搬运机器人避障控制方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省自然科学基金课题(2021JZ-04)


Obstacle Avoidance Control Method of Warehouse Handling Robot Based on Potential ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有仓储搬运机器人避障控制算法存在的路径寻优易陷入局部最优解,及多机器人同时作业易发生碰撞等问题,对物流机器人的避障控制进行了研究,并提出一种基于改进势场蚁群的控制算法。对机器人搬运过程中的移动轨迹进行了研究,给出了机器人空间运动学方程。采用了蚁群算法对经典人工势场算法进行优化,提升全局寻优能力并平衡引力和斥力的相互作用关系;在仓储搬运机器人的局部区域避障方面,基于策略梯度算法对人工势场做二次优化,通过分析下一动作指令的发生概率,改善多机器人同时作业时行进路径选择的随机性。经测试,提出控制算法的路径最短,完成单次运输任务耗时仅为12.3s,而且在复杂路径规划条件下,机器人之间发生碰撞的次数也显著少于传统避障控制算法,经实际应用能够满足提升仓储物流管理效率的需求。

    Abstract:

    Aiming at the problems of path optimization and collision of multiple robots, the obstacle avoidance control algorithm of warehouse handling robots is studied and a control algorithm based on potential ant colony is proposed. The moving trajectory of the robot in the process of transport is studied, and the space kinematics equation is given. The ant colony algorithm is used to optimize the classical artificial potential field algorithm, improve the global optimization ability and balance the relationship between gravity and repulsion. In the aspect of local obstacle avoidance of warehouse handling robots, the artificial potential field is optimized twice based on the strategy gradient algorithm, and the randomness of path selection when multiple robots work at the same time is improved by analyzing the probability of occurrence of the next action instruction. After testing, the proposed control algorithm has the shortest path and only takes 12.3s to complete a single transportation task. Moreover, under the condition of complex path planning, the number of collisions between robots is significantly less than that of the traditional obstacle avoidance control algorithm, which can meet the needs of warehousing and logistics through practical application.

    参考文献
    相似文献
    引证文献
引用本文

陈楠,杜鹏,乔立春.基于势场蚁群算法的仓储搬运机器人避障控制方法计算机测量与控制[J].,2024,32(8):168-173.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-11
  • 最后修改日期:2024-01-08
  • 录用日期:2024-01-10
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码