基于微服务架构和GRU算法的卷烟质量监控预警系统设计
DOI:
作者:
作者单位:

江西中烟工业有限责任公司技术中心

作者简介:

通讯作者:

中图分类号:

基金项目:

江西中烟工业有限责任公司科技项目“构建卷烟工艺加工过程质量评价模型”(赣烟工科计2020-09)


Design and Application of a Cigarette Quality Monitoring and Early Warning System Based on Microservices Architecture
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的卷烟质量监控预警系统质量监控自动化程度低,提出一种基于微服务架构的卷烟质量监控预警系统;该系统采用Spring Cloud微服务架构,搭建卷烟生产过程监控数据库,收集海量卷烟加工过程质量数据,结合深度学习算法门控循环神经网络Gated Recurrent Unit(GRU)建立卷烟质量监控模型,更加有效的实现质量预警,提高卷烟加工过程自动化程度;经过测试证明,基于微服务架构和GRU算法的卷烟质量监控预警系统具备高灵活性、扩展性,解决了卷烟生产系统在实际应用中效率低、质量难以把控的问题。

    Abstract:

    Traditional cigarette quality monitoring and early warning systems often suffer from low automation levels. In this study, we propose a cigarette quality monitoring and early warning system based on microservices architecture to address this issue. The system utilizes the Spring Cloud microservices framework to construct a database for monitoring the cigarette production process. Massive amounts of data regarding the quality of cigarette processing are collected. Deep learning algorithms, specifically the Gated Recurrent Unit (GRU) neural networks, are employed to establish a cigarette quality monitoring model. This approach significantly improves the effectiveness of quality early warnings and enhances the automation level of the cigarette processing process. Through rigorous testing, it has been demonstrated that the cigarette quality monitoring and early warning system, based on microservices architecture and the GRU algorithm, exhibits high flexibility and scalability. This system successfully resolves the problems of low efficiency and difficulty in quality control faced by cigarette production systems in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

杨俊杰,徐志强,张军,万宇超,欧阳敏,范安平,许冰洋.基于微服务架构和GRU算法的卷烟质量监控预警系统设计计算机测量与控制[J].,2024,32(12):153-158.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-23
  • 最后修改日期:2023-12-05
  • 录用日期:2023-12-07
  • 在线发布日期: 2024-12-24
  • 出版日期:
文章二维码