基于改进遗传算法的信道估计方案
DOI:
作者:
作者单位:

1.中国电子科技集团公司 第 54 研究所;2.中国电子科技集团第54研究所

作者简介:

通讯作者:

中图分类号:

TN929. 5

基金项目:

国家自然科学基金青年科学( 62101517 )


Channel Estimation Scheme Based on Improved Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高通信系统信道估计的准确率,同时适应更大的数据量,进行更加复杂的数据计算,引入神经网络的方法进行信道估计,采用了BP和RBF神经网络进行实验对比,与传统信道估计方式相比有明显提升;在此基础上,进一步提出基于改进遗传算法优化的 RBF 神经信道估计方法,目的是帮助确定 RBF 网络的隐藏层参数, 使得网络的参数趋于全局最优解,信道估计器的性能从而得到提升。经过 MATLAB 仿真,改进后的RBF神经网络可以更好地解决信道估计问题,验证了此方法的可行性。

    Abstract:

    In order to improve the accuracy of channel estimation in communication systems and adapt to larger data volumes for more complex data calculations, a neural network method was introduced for channel estimation. An RBF neural network and a BP neural network were harnessed for an experimental comparison, demonstrating a notable enhancement over conventional channel estimation techniques. Building on this, an RBF neural channel estimation method optimized by a genetic algorithm was also suggested. This is intended to assist in establishing the hidden layer parameters of the RBF network, steering the network parameters toward the universally optimal solution and thereby boosting the efficacy of the channel estimator.The enhanced RBF neural network"s capability to effectively resolve the channel estimation issue is confirmed by the MATLAB simulation, thereby demonstrating the viability of this approach.

    参考文献
    相似文献
    引证文献
引用本文

胡一晨,耿虎军.基于改进遗传算法的信道估计方案计算机测量与控制[J].,2024,32(1):165-171.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-18
  • 最后修改日期:2023-09-01
  • 录用日期:2023-09-04
  • 在线发布日期: 2024-01-29
  • 出版日期:
文章二维码