融合转置卷积的YOLOv3吸烟检测算法
DOI:
作者:
作者单位:

上海应用技术大学电气与电子工程学院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


YOLOv3 smoking detection algorithm based on transposed convolution fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为预防公共场所因吸烟而引发的安全事故,在YOLOv3框架的基础上提出了改进的吸烟检测算法。首先针对传统上采样操作丢失像素信息等问题,设计出一种卷积-转置卷积模块进行替换;在特征融合部分加入坐标注意力机制,使网络更好关注小目标;使用改进的k-means++优化先验框;最后将GIoU替换IoU作为算法的损失函数,进一步提高检测精度。此外,构建了一个多场景的抽烟数据集,并对数据集进行数据增强与扩充。实验结果表明改进后算法较原算法在AP@0.5和AP@0.5:0.95上分别提高5.58%和3.34%,FPS降低3点左右。

    Abstract:

    To prevent safety incidents caused by smoking in public places, an improved smoking detection algorithm is proposed based on the YOLOv3 framework. Firstly, to address the issue of pixel information loss during traditional upsampling operations, a convolutional-transpose convolutional module is designed to replace it. In the feature fusion part, a coordinate attention mechanism is added to make the network better focus on small targets. Improved k-means++ is used to optimize the prior box. Finally, the GIoU is replaced with IoU as the loss function of the algorithm to further improve the detection accuracy. In addition, a multi-scene smoking dataset is constructed, and data augmentation and expansion are performed on the dataset. Experimental results show that the improved algorithm has a 5.58% and 3.34% increase in AP@0.5 and AP@0.5:0.95 compared to the original algorithm, respectively, and the FPS is reduced by about 3 points.

    参考文献
    相似文献
    引证文献
引用本文

龚英杰,沈希忠.融合转置卷积的YOLOv3吸烟检测算法计算机测量与控制[J].,2024,32(8):40-46.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-03
  • 最后修改日期:2023-09-08
  • 录用日期:2023-09-11
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码