基于改进的GoogleNet-ResNet算法的路基病害智能分类方法
DOI:
CSTR:
作者:
作者单位:

西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省软科学研究计划项目(2021KRM029);西安市高校院所人才服务企业项目(23GXFW0045)


Intelligent Classification Method for Road Pavement Diseases Based on Improved GoogleNet-ResNet Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对路基病害分类算法存在的复杂病害辨识难度大、多视图雷达图像特征利用不充分等问题,本文提出一种基于改进的GoogleNet-ResNet算法的路基病害智能分类方法。首先,引入坐标注意力和改进的Inception模块对GoogleNet网络结构进行优化。然后,利用改进的GoogleNet学习c-scan数据特征剔除非目标病害,实现病害目标的粗分类。最后,将分类成病害的b-scan数据输入基于迁移学习的ResNet50,实现病害的细分类。实验表明,改进的GoogleNet进行病害粗分类的准确率可达到98.2%,检测速度可达90.9FPS。基于迁移学习的ResNet50进行病害细分类的准确率可达90.5%,检测速度可达52.6FPS。本文算法的准确率比单独的改进的GoogleNet网络高10.1%,比单独的ResNet50网络高7.4%,有效地提高了道路路基病害的识别精度与效率。

    Abstract:

    In response to the challenges of complex disease identification and the underutilization of multi-view radar image features in the classification algorithm for roadbed diseases, this paper proposes an intelligent classification method for roadbed diseases based on an improved GoogleNet-ResNet algorithm. Firstly, it introduces coordinate attention and improved Inception modules to optimize the GoogleNet network structure. Then, the improved GoogleNet is utilized to learn the c-scan data features, eliminating non-target diseases and achieving a coarse classification of the disease targets. Finally, the b-scan data classified as diseases is input into a ResNet50 model based on transfer learning to achieve the fine classification of the diseases. The results show that the improved GoogleNet achieves an accuracy of 98.2% for coarse disease classification and a detection speed of 90.9 FPS. The accuracy of disease sub-classification using ResNet50 based on transfer learning reaches 90.5%, and the detection speed reaches 52.6 FPS. The proposed algorithm in this paper achieves an accuracy that is 10.1% higher than that of the improved GoogleNet network alone, and 7.4% higher than that of the ResNet50 network alone. This algorithm effectively improves the recognition accuracy and efficiency of roadbed disease detection while reducing the probability of misjudgments.

    参考文献
    相似文献
    引证文献
引用本文

陈登峰,杨小燕,张温,何拓航,陈俊彤.基于改进的GoogleNet-ResNet算法的路基病害智能分类方法计算机测量与控制[J].,2024,32(8):250-256.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-11-23
  • 录用日期:2023-09-04
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码