摘要:针对遥感图像中背景复杂度高、目标尺寸多样所导致的目标检测精度低的问题,提出一种基于改进 YOLOv5的遥感图像目标检测算法。该算法将具有Transformer风格的ConvNeXt网络作为主干网络,以克服卷积神经网络(CNN)结构的局限性,捕获更多全局信息。引入 SimAM 注意力机制在不增加网络参数的情况下,推断出特征图的3D注意力权值,提高网络的稳定性以及抗干扰能力。同时采用全局显式集中调节方案的集中特征金字塔(CFP),捕获全局长距离依赖关系以及遥感图像的局部关键区域信息。将本文提出的算法在 RSOD 数据集上进行消融实验,结果表明,本文提出的算法能够显著提高遥感图像目标检测的平均准确率。