基于改进YoloV5的绝缘子损坏检测识别
DOI:
CSTR:
作者:
作者单位:

南京工程学院 人工智能产业技术研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年基金资助项目(61903183)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    绝缘子是一种设计用于在不同电势导线上承受电压和机械压力的装置。由于电环境和电力负载波动的影响,绝缘子可能会遭受多种电-机耦合应力破坏,从而无法正常工作并且影响整个绝缘子网络的寿命。为了解决这个问题,提出了通过目标检测算法来检测绝缘子损坏的方案。改进的方案基于YOLOv5s模型进行。首先,在原有的YOLOv5s模型基础上增加了更多的小目标检测层,从而提高了检测的精度。此外,引入了额外的运算层以扩展特征图,并使用SEA(注意和观察)注意模块使网络更专注于检测对象。还采用SIOU代替YOLOv5s中的损失函数。实验结果显示,改进后的模型相对于传统的YOLOv5s模型在绝缘子损坏检测方面具有明显优势。改进后的模型在mAP(平均精度均值)、P(查准率)和R(查全率)等指标上分别提高了2.5%、1.1%和0.8%。与原始的YOLOv5s模型以及其他模型(如Yolov5m、Yolov5l等)相比,在绝缘子缺陷检测和识别方面具有更强的竞争力。这些改进策略为提高绝缘子损坏检测精度提供了有效的解决方案。通过这些改进,我们可以更准确地检测绝缘子损坏,并及早采取必要的维修和保养措施,以延长绝缘子的寿命和确保电力系统的稳定运行。

    Abstract:

    An insulator is a device designed to withstand voltage and mechanical pressure on conductors with different potentials. Due to the impact of electrical environment and power load fluctuations, insulators may be subjected to various electrical mechanical coupling stresses, which may prevent them from working properly and affect the lifespan of the entire insulator network. To address this issue, a scheme was proposed to detect insulator damage through object detection algorithms. The improved solution is based on the YOLOv5s model. Firstly, more small object detection layers have been added to the original YOLOv5s model, thereby improving the detection accuracy. In addition, an additional computational layer was introduced to extend the feature map, and the SEA (Attention and Observation) attention module was used to make the network more focused on detecting objects. SIOU is also used to replace the Loss function in YOLOv5s. The experimental results show that the improved model has significant advantages in insulator damage detection compared to the traditional YOLOv5s model. The improved model improved by 2.5%, 1.1%, and 0.8% on indicators such as mAP (mean accuracy), P (precision), and R (recall), respectively. Compared with the original YOLOv5s model and other models (such as Yolov5m, Yolov5l, etc.), it has stronger competitiveness in insulator defect detection and recognition. These improvement strategies provide effective solutions for improving the accuracy of insulator damage detection. Through these improvements, we can more accurately detect insulator damage and take necessary repair and maintenance measures as soon as possible to extend the lifespan of insulators and ensure the stable operation of the power system.

    参考文献
    相似文献
    引证文献
引用本文

黄国恒,曹雪虹,焦良葆,钱予阳.基于改进YoloV5的绝缘子损坏检测识别计算机测量与控制[J].,2024,32(7):23-29.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-05
  • 最后修改日期:2023-08-14
  • 录用日期:2023-08-15
  • 在线发布日期: 2024-08-02
  • 出版日期:
文章二维码