基于萤火虫算法的移动边缘计算网络带宽资源优化策略
DOI:
作者:
作者单位:

1.广州华商学院 2.数据科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Bandwidth resource optimization strategy of mobile edge computing network based on Firefly algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于移动边缘计算网络在边缘位置部署,在多用户并发的情况下带宽资源优化策略容易出现高计算负荷,降低带宽资源优化的效果。为了解决这一问题,提出基于萤火虫算法的移动边缘计算网络带宽资源优化策略。在服务器之间数据连续传输的情况下,确定网络内用户分布情况,计算网络运行需要消耗的能量,利用萤火虫算法建立以带宽资源为中心的数学模型,以移动边缘计算网络的各项参数作为依据,对数学模型求解,得到最优解后,以用户最大收益为目标部署优化策略。实验结果表明:提出的基于萤火虫算法的带宽资源优化策略计算延迟小,网络带宽资源优化效能高,整体计算性能得到了明显提升。

    Abstract:

    Because mobile edge computing networks are deployed at the edge, the bandwidth resource optimization strategy is prone to high computing load in the case of multi-user concurrency, reducing the effect of bandwidth resource optimization. In order to solve this problem, a mobile edge computing network bandwidth resource optimization strategy based on Firefly algorithm is proposed. In the case of continuous data transmission between servers, determine the distribution of users in the network, calculate the energy consumed by the network operation, use the Firefly algorithm to establish a mathematical model centered on bandwidth resources, and solve the mathematical model based on various parameters of the mobile edge computing network. After the optimal solution is obtained, deploy the optimization strategy with the maximum benefit of users as the goal. The experimental results show that the proposed bandwidth resource optimization strategy based on the Firefly algorithm has low computing delay, high efficiency of network bandwidth resource optimization, and the overall computing performance has been significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

徐胜超,陈 刚,杨 波,毛明扬,王宏杰.基于萤火虫算法的移动边缘计算网络带宽资源优化策略计算机测量与控制[J].,2023,31(11):280-285.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-29
  • 最后修改日期:2023-07-28
  • 录用日期:2023-07-31
  • 在线发布日期: 2023-11-23
  • 出版日期:
文章二维码