基于Cache-DCN YOLOX算法的交通标志检测方法研究
DOI:
CSTR:
作者:
作者单位:

1.江苏省盐城市亭湖区盐城工学院信息工程学院;2.盐城工学院 信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

江苏省研究生实践创新计划项目资助(No: SJCX22_1685, SJCX21_1517),江苏省高等学校自然科学研究重大项目资助(No: 19KJA110002),国家自然科学资助(No.61673108),江苏省高校自然科学研究面上项目(NO.18KJD510010, 19KJB510061),江苏省自然科学(No. BK20181050)。


Research on Traffic Sign Detection Method Based on Cache-DCN YOLOX Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种基于Cache-DCN YOLOX算法的交通标志识别方法。在该方法中,使用DCN可变形卷积替换backbone中的普通卷积,有效地增大了模型的感受野,提高了特征提取能力;使用EIOU损失函数代替YOLOX中的GIOU损失函数,优化了训练模型,提高了收敛的速度;优化设计了YOLOX算法中的强弱两阶段的训练过程,增强了模型的泛化性能,同时加入cache方案,进一步提高了检测精度。在交通标志数据集TT100K上进行了实验,提出方法的检测精度为67.2%,比原YOLOX算法的检测精度提升了6.4%,同时,在被遮挡的小目标等多种受干扰的环境下,提出的方法能够精确地检测出交通标志,并有着较好的置信度,满足实际需求。

    Abstract:

    Aiming at the problem of low detection accuracy of traditional traffic sign recognition algorithms, a traffic sign recognition method based on Cache-DCN YOLOX is proposed. In this method,deformable convolution is used to replace the ordinary convolution in the backbone, which effectively increases the Receptive field of the model and improves the ability of feature extraction;EIOU loss function is used instead of GIOU loss function in YOLOX to optimize the training model and improve the convergence speed;The training process of the strength stage in the YOLOX algorithm was optimized and designed to enhance the generalization performance of the model. At the same time, a cache scheme was added to further improve the detection accuracy. Experiments were conducted on the traffic sign dataset TT100K, and the proposed method achieved a detection accuracy of 67.2%, which is 6.4% higher than the original YOLOX algorithm. At the same time, in various disturbed environments such as occluded small targets, the proposed method can accurately detect traffic signs with good confidence and meet practical needs.

    参考文献
    相似文献
    引证文献
引用本文

高尉峰,王如刚,王媛媛,周锋,郭乃宏.基于Cache-DCN YOLOX算法的交通标志检测方法研究计算机测量与控制[J].,2024,32(2):71-77.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-28
  • 最后修改日期:2023-08-03
  • 录用日期:2023-08-04
  • 在线发布日期: 2024-03-20
  • 出版日期:
文章二维码