基于模糊神经网络的无人机数据传输时延控制模型
DOI:
CSTR:
作者:
作者单位:

广西工业职业技术学院

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:


Data Transmission Delay Control Model for Unmanned Aerial Vehicle Based on Fuzzy Neural NetworkWeiJinri1,SQinXi2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传输信道状态若是处于拥塞状态,会使得无人机数据传输时延大幅度增加,所以构建基于模糊神经网络的无人机数据传输时延控制模型。考虑直射、散射和反射等现象确定无人机数据传输信道,计算无人机数据传输信道传输时延,综合能量消耗、时延等因素判断无人机数据传输信道是否处于拥塞状态。利用基于模糊神经网络的时延控制模型生成时延控制指令,通过扩频调制、拥塞调度和队列管理等步骤,实现无人机数据传输时延控制。通实验结果表明,在该模型控制下无人机数据传输时延达到预期水平,控制误差约为0.03s,且未对数据传输进程产生明显不利影响,控制效果更好。

    Abstract:

    If the transmission channel state is in the congestion state, the UAV data Transmission delay will increase significantly. Therefore, the UAV data Transmission delay control model based on fuzzy neural network is constructed. The UAV data transmission channel is determined by considering the phenomena of direct radiation, scattering and reflection, and the Transmission delay of the UAV data transmission channel is calculated. The UAV data transmission channel is judged to be congested by combining the factors such as energy consumption and delay. The delay control command is generated by the delay control model based on fuzzy neural network, and the UAV data Transmission delay control is achieved through spread spectrum modulation, congestion scheduling, queue management and other steps. The experimental results show that under the control of this model, the data transmission time of UAV reaches the expected level, the control error is about 0.03s, and there is no obvious adverse impact on the data transmission process, so the control effect is better.

    参考文献
    相似文献
    引证文献
引用本文

韦金日,覃希.基于模糊神经网络的无人机数据传输时延控制模型计算机测量与控制[J].,2024,32(6):97-103.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-05
  • 最后修改日期:2023-07-17
  • 录用日期:2023-07-18
  • 在线发布日期: 2024-06-18
  • 出版日期:
文章二维码