基于深度学习的智能治超场景下货车车型识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4 ??????

基金项目:

甘肃省科技计划资助(21YF11GA014)


Type Recognition of Trucks Based on Deep Learning in Intelligent Overload Management Scenarios
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能治超场景下超载车辆自动化检测的需求,在YOLOv5s的基础上从数据、模型和算法三个方面提出了一种改进的货车车型识别算法。在数据层面,使用的数据增强模拟了现实中面对恶劣天气、图像噪声和数据损坏等复杂场景,丰富了训练数据的多样性,提高了模型在复杂场景下的鲁棒性。在模型方面,提出了一种新的注意力机制来综合考虑不同通道的重要性和编码特征的位置信息,提高了模型的识别准确性。在算法层面,针对现有算法的不足,提出了一种更通用的标准来判断货车与轮轴的隶属关系,以适用更复杂的场景。实验结果表明,提出的改进模型对货车和轮轴的识别精度分别达到99.34%和99.22%,对货车车型识别的准确率为98.71%。与经典的YOLOv5s网络相比,货车和轮轴的平均识别精度提高了2.39%,货车车型的识别准确率提高了2.22%。综上,所提出的方法实现了对货车车型自动和准确的识别,可以为智能治超场景下的货车车型识别提供理论支撑。

    Abstract:

    In response to the demand for automated detection of overloaded trucks in intelligent overload management scenarios, an improved method is proposed based on YOLOv5s to recognize truck type from three aspects: data, model, and algorithm. At the data level, the data augmentation used simulates complex scenarios such as facing severe bad weather conditions, image noise, and data damage in real life, which enriches the diversity of training data and improves the robustness of the model. In terms of the model, a new attention mechanism is proposed to consider the importance of different channels and the positional information of encoding features, which improves the recognition accuracy of the model. In order to overcome the shortcomings of existing algorithms, a more general standard for determining the subordinate relationship between trucks and axles is proposed to apply to more complex scenarios. The experimental results show that the proposed improved model achieves recognition accuracy of 99.34% and 99.22% for truck and axle, respectively, and 98.71% accuracy for truck type recognition. Compared with the classic YOLOv5s network, the average recognition accuracy of trucks and axles has increased by 2.39%, and the truck type recognition accuracy is increased by 2.22%. In summary, the proposed method achieves automatic and accurate recognition of truck type, which can provide theoretical support for truck type recognition in intelligent overload management scenarios.

    参考文献
    相似文献
    引证文献
引用本文

张磊,康进实,杨劲涛.基于深度学习的智能治超场景下货车车型识别计算机测量与控制[J].,2023,31(11):248-254.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-30
  • 最后修改日期:2023-06-05
  • 录用日期:2023-06-06
  • 在线发布日期: 2023-11-23
  • 出版日期:
文章二维码